scholarly journals Design and Kinematics Analysis of Suspension System for a Formula Society of Automotive Engineers (FSAE) Car

Author(s):  
K. Sriram ◽  
K. Anirudh ◽  
B. Jayanth ◽  
J. Anjaneyulu

The main objective of the Suspension of a vehicle is to maximize the contact between the vehicle tires and the road surface, provide steering stability and provide safe vehicle control in all conditions, evenly support the weight of the vehicle, transfer the loads to springs, and guaranteeing the comfort of the driver by absorbing and dampening shock. This paper discusses the kinematic design of a double a-arm Suspension system for an FSAE Vehicle. The hardpoint’s location can be determined using this procedure to simulate motion in any kinematic simulation software. Here, Optimum Kinematics is used as kinematic simulation software, and the results are verified using Msc Adams simulation. The method illustrated deals with the basics of Kinematics which helps to predict the characteristics of the Suspension even before simulating it in the kinematic simulation software.

2002 ◽  
Vol 8 (7) ◽  
pp. 967-991 ◽  
Author(s):  
Javad Marzbanrad ◽  
Goodarz Ahmadi ◽  
Yousef Hojjat ◽  
Hassan Zohoor

An optimal preview control of a vehicle suspension system traveling on a rough road is studied. A three-dimensional seven degree-of-freedom car-riding model and several descriptions of the road surface roughness heights, including haversine (hole/bump) and stochastic filtered white noise models, are used in the analysis. It is assumed that contact-less sensors affixed to the vehicle front bumper measure the road surface height at some distances in the front of the car. The suspension systems are optimized with respect to ride comfort and road holding preferences including accelerations of the sprung mass, tire deflection, suspension rattle space and control force. The performance and power demand of active, active and delay, active and preview systems are evaluated and are compared with those for the passive system. The results show that the optimal preview control improves all aspects of the vehicle suspension performance while requiring less power. Effects of variation of preview time and variations in the road condition are also examined.


1997 ◽  
Vol 25 (2) ◽  
pp. 78-95 ◽  
Author(s):  
J. J. Lazeration

Abstract Tire performance such as handling, noise, traction, wear, etc., is determined ultimately in the tire footprint. The nature of the distribution of the contact stresses within the tire footprint determine whether or not the tire tread adheres to the road or slips relative to the road surface. Loss of adhesion between the tire tread and the road can be extreme as in gross slippage resulting in the loss of vehicle control or it can be subtle as in the small magnitude slippage that promotes treadwear. This paper presents results from an experimental characterization of the slip between the tread of a free-rolling tire and a simulated road surface. Trajectories of discrete points on the tread surface were measured from the entrance to the exit of the footprint and were used to calculate the total slip of each point. The relationship between the average slip of the tire and toe angle was established. Also, the relationship between toe, camber, and the distribution of tread slip and velocity across the tire footprint, was investigated in this paper.


2019 ◽  
Vol 8 (02) ◽  
pp. 25-30
Author(s):  
Nanda Pranandita

The vehicle suspension system is an important part to minimize the vibration of the vehicle caused by road unevenness. The classification of the road surface in this study is based on the classification of road roughness "Good" according to ISO 8606. The analysis of passive suspension system in this research may explain the frequency response which is received by the motorists while driving. The full car model with 1 DOF riders used in this study, simulated by using the numerical simulation software. The frequency response analysis is done on the vertical movement of the driver. Based on the analysis performed, the highest acceleration of 2.375 m / s2 at a frequency of 3.258 Hz. This value indicates the condition of "Uncomfortable" based on the table of ISO 2631. This condition will cause the rider toexperience dizziness, therefore it is strongly advised motorists to avoid frequencies below 7 Hz.


2014 ◽  
Vol 592-594 ◽  
pp. 2165-2178 ◽  
Author(s):  
M.W. Trikande ◽  
Vinit V. Jagirdar ◽  
Muraleedharan Sujithkumar

Comparative performance of vehicle suspension system using passive, and semi-active control (on-off and continuous) has been carried out for a multi-axle vehicle under the source of road disturbance. Modelling and prediction for stochastic inputs from random road surface profiles has been carried out. The road surface is considered as a stationary stochastic process in time domain assuming constant vehicle speed. The road surface elevations as a function of time have been generated using IFFT. Semi active suspension gives better ride comfort with consumption of fraction of power required for active suspension. A mathematical model has been developed and control algorithm has been verified with the purpose/objective of reducing the unwanted sprung mass motions such as heave, pitch and roll. However, the cost and complexity of the system increases with implementation of semi-active control, especially in military domain. In addition to fully passive and fully semi-active a comparison has been made with partial semi-active control for a multi-axle vehicle to obviate the constraints. The time domain response of the suspension system using various control logics are obtained and compared. Simulations for different class of roads as defined in ISO: 8608 have been run and the ride comfort is evaluated and compared in terms of rms acceleration at CG in vertical direction (Z), which is the major contributor for ORV (Overall Ride Value) Measurement.


Author(s):  
M. B. A. Abdelhady ◽  
S. A. Alhasan

In this work, a novel neural fuzzy (NF) control scheme is introduced to design a fully active suspension system. The fuzzy part of the controller handles uncertainties, whereas the neural part learns from past events and tunes the controller to optimize the performance of the suspension system. The two-degree-of-freedom quarter-car model is used to illustrate the control strategy and to evaluate the performance parameters for sinusoidal and random road inputs. A sinusoid road surface description is first used to obtain an initial design of the NF controller. The acceleration of the sprung mass is compared with that of an ideal skyhook model to produce an error signal, e(t); this error signal, as well as Δe(t) are employed as inputs to the controller. Results obtained for this type of road input indicate that the NF active system has significant advantages over the linear quadratic regulator (LQR) active suspension system. In order to get a broader view, more realistic road descriptions and practical control laws were used. The performance parameters were computed when the road surface was presented as a random road input. The control law of the NF active system was modified to achieve a novel non-linear control (NC) strategy. This control law requires only measurement of the body acceleration and the road input displacement, and hence, it can be realized easily in practice when compared with all other control laws, including the LQR one. For a wide range of road surfaces, results show that the performance capability of this novel system is much better than that of the LQR active system. For example, the improvements, under a medium-quality road surface and a 30-m/s vehicle speed, achieved a reduction in the rms values of the ISO weighted body acceleration and the dynamic tyre load by 17% and 20% respectively.


2012 ◽  
Vol 184-185 ◽  
pp. 748-751
Author(s):  
Zhao Zhong Cai ◽  
Hui Mei Li ◽  
Gang An

In order to estimate the damping consumption of traditional suspension, this paper established the tracked vehicle model based on the dynamic simulation software RecurDyn, and the road models of B、D and F grad are constructed by harmony superposition method. Through the simulation of the suspension vibration, the relation between suspension consumption and different road surface and velocity is performed. The results supply some reference for the research on regenerative-energy suspension of tracked vehicle.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jagat J. Rath ◽  
Kalyana C. Veluvolu ◽  
Michael Defoort

The suspension system is faced with nonlinearities from the spring, damper, and external excitations from the road surface. The objective of any control action provided to the suspension is to improve ride comfort while ensuring road holding for the vehicle. In this work, a robust higher order sliding mode algorithm combining the merits of the modified supertwisting algorithm and the adaptive supertwisting algorithm has been proposed for the nonlinear active suspension system. The proposed controller is robust to linearly growing perturbations and bounded uncertainties. Simulations have been performed for different classes of road excitations and the results are presented.


Author(s):  
Pavel Vijay Gaurkar ◽  
Karthik Ramakrushnan ◽  
Akhil Challa ◽  
Shankar C Subramanian ◽  
Gunasekaran Vivekanandan ◽  
...  

Knowledge of the tyre-road interface traction limit during braking of a road vehicle can drastically improve safety and ensure stable braking on varied road conditions. This study proposes an optimal reference slip algorithm that determines the road surface while the vehicle is braking, by implicitly tracking the traction limit. It presents wheel slip variance regulation as a potential approach towards reference wheel slip estimation for wheel slip regulation (WSR). The variance regulation approach computes reference wheel slip using past wheel slip estimates and regulates wheel slip variation at a set point. This variance regulation problem was solved using least-squares estimation, yielding reference slip dynamics. A 3-staged nested control architecture was developed with reference slip dynamics to yield an anti-lock braking system (ABS) algorithm consisting of a brake controller, WSR algorithm and reference slip estimation. The algorithm was experimentally corroborated in a Hardware-in-Loop setup consisting of the pneumatic brake system of a heavy commercial road vehicle, and IPG TruckMaker®, a vehicle dynamics simulation software. The proposed ABS algorithm was tested on straight roads with homogeneous surfaces, split friction surfaces, and transition friction surfaces. It ensured stable braking in all road cases, with a 7%–18% reduction in braking distance on homogeneous road surfaces compared to the same vehicle without ABS. The vehicle directional stability was retained on a split-friction surface, and the ABS algorithm was observed to adapt to sudden transitions in the road surface.


Author(s):  
A. Sahaya Grinspon

Retractable suspension system is used to lift the auxiliary axle of a multi axle vehicle. The article summarizes the current state of knowledge of the lifting mechanisms, which are used for lifting and lowering the auxiliary axle. Various designs of liftable axle are described. To proper use of the auxiliary axle, important guidelines are given for suppliers, OEMs and customers. Several viable steerable and non-steerable liftable axles are developed with various load carrying capacities using air bellows. In these liftable axles, the air bellows expands when compressed air is supplied to the air bellows at a required pressure. The air bellows activates the lifting mechanism; thereby the tires of the auxiliary axle are lifted from the road surface. When the air is released from the air bellows, the tires are lowered to engage the road surface.


1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


Sign in / Sign up

Export Citation Format

Share Document