scholarly journals Frovatriptan Succinate Loaded Lipid Nanoparticles: Formulation, Evaluation, Stability Study and Shelf Life Determination

Author(s):  
Mohd Yasir ◽  
Iti Chauhan ◽  
Madhu Verma ◽  
KM Noorulla ◽  
Abdurazak J. Tura ◽  
...  

Aims: The aim of the research work was to prepare and optimize the Frovatriptan Succinate (FVN) loaded solid lipid nanoparticles. Methods: SLNs were developed by solvent  emulsification diffusion technique and evaluated for particle size, PDI, zeta potential, in-vitro drug release, and finally stability study was conducted for the detection of shelf life. Results: The optimized formulation exhibited particle size, PDI, and zeta potential 122.85±9.24 nm, 0.129 and -25.85 mV, respectively.  In-vitro drug release study exhibited  biphasic drug release pattern.  Initially (in first two hrs) the drug was release in fast manor i.e. burst release (32.36±7.28 %). It might be due to the presence of drug on the surface of SLNs. After  2 hrs of study, the release pattern became sustained up to 24 hrs. The total amount of drug release in 24 h was found to be 91.29 ± 8.26%.  Various kinetic models were applied to evaluate the release pattern of the drug form the formulation.  Higuchi model was found to be the best fitted with the R2 value of 0.9482. The release mechanism was found to be the Fickian type with the release exponent (n) value of 0.4386. Finally, stability study was conducted. The formulation was found to be the stable under the studied conditions. The shelf life of the formulation was found to be 1.77 years. Conclusion: Finally, it could be concluded that, the SLNs are the suitable carrier for the delivery of FVN .

Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


2018 ◽  
Vol 10 (4) ◽  
pp. 82
Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
Gouranga Nandi

Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation.Conclusion: A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson’s disease.


Author(s):  
REMYA P. N. ◽  
DAMODHARAN N.

Objective: The aim of the present study is to develop solid lipid nanoparticles (SLNs) of Nimodipine using hot homogenization followed by ultrasonication technique and to improve the dissolution characteristics of the drug. Methods: The Nimodipine-loaded SLN was prepared using palmitic acid and stearic acid as a lipid matrix and Tween-80 as an emulsifier by a hot homogenization and ultra-sonication method. The physicochemical characteristics of SLN were investigated for entrapment efficiency, zeta potential, in vitro drug release, particle size analysis, Fourier transform infrared studies, scanning electron microscopy, and stability studies. Results: The mean particle size, PDI, Zeta potential and entrapment efficiency of optimized Nimodipine SLN formulation of stearic acid was found to be 119.54 nm, 0.165,-17.60mV, 85% and for palmitic acid was found to be 132.54 nm, 0.155,-17.0mV, 81% respectively. In vitro drug release studies indicated that after an initial burst release, SLN could provide prolonged release of Nimodipine. The selected SLNs have shown good stability for a period of 180 d. Conclusion: SLN formulations showed the best results in EE as well as in vitro drug release and therefore, these results indicate that SLN might be a promising delivery system to enhance the release of Nimodipine.


2017 ◽  
Vol 9 (6) ◽  
pp. 10 ◽  
Author(s):  
P. Manimekalai ◽  
R. Dhanalakshmi ◽  
R. Manavalan

Objective: The objective of this study was to prepare ceftriaxone sodium chitosan nanoparticles (CS-NP) from different drug and polymer ratios and analyze their physicochemical characteristics.Methods: Ceftriaxone sodium loaded chitosan nanoparticles were prepared using chitosan as a polymer and tri sodium polyphosphate (TPP) as cross linking agent by ionic cross linking and coacervation with the aid of sonication. Various trials have been carried out for the confirmation of nanoformulation. Parameters such as the zeta potential, polydispersity, particle size, entrapment efficiency, in vitro drug release Thermo gravimetric analysis and scanning electron microscope of the nanoparticles were assessed for confirmation of nanoformulation.Results: The formulated nanoparticles showed mean particle size, polydispersity index and zeta potential to be 183.1±8.42 nm, 0.212±0.05, +38.5±1.6 mV respectively and the drug loading was found to be 46.42±10 %. In vitro drug release was showed a biphasic release pattern with initial burst release followed by sustained release of formulated nanoparticles. The cumulative percentage of drug release was about 83.08 %.Conclusion: Formulation F2 was found to be the best formulation with a higher cumulative percentage of drug release. Modified ionic gelation method can be utilized for the development of chitosan nanoparticles of ceftriaxone sodium. Polymer and crosslinking agent concentrations and sonication time are rate-limiting factors for the development of the optimized formulation. The chitosan nanoparticles developed would be capable of sustained delivery of ceftriaxone sodium.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


2019 ◽  
Vol 7 (5) ◽  
pp. 389-403 ◽  
Author(s):  
Ritika Kondel ◽  
Nusrat Shafiq ◽  
Indu P. Kaur ◽  
Mini P. Singh ◽  
Avaneesh K. Pandey ◽  
...  

Background: Acyclovir use is limited by a high frequency of administration of five times a day and low bioavailability. This leads to poor patient compliance. Objectives: To overcome the problem of frequent dosing, we used nanotechnology platform to evaluate the proof of concept of substituting multiple daily doses of acyclovir with a single dose. Methods: Acyclovir was formulated as solid lipid nanoparticles (SLN). The nanoparticles were characterized for particle size, surface charge and morphology and in vitro drug release. The pharmacokinetic and pharmacodynamic of SLN acyclovir were compared with conventional acyclovir in a mouse model. Results: SLN showed drug loading of 90.22% with 67.44% encapsulation efficiency. Particle size was found to be of 131 ± 41.41 nm. In vitro drug release showed 100% release in SIF in 7 days. AUC0-∞ (119.43 ± 28.74 μg/ml h), AUMC0-∞ (14469 ± 4261.16 μg/ml h) and MRT (120.10 ± 9.21 h) were significantly higher for ACV SLN as compared to ACV AUC0-∞ (12.22 ± 2.47 μg/ml h), AUMC0-∞ (28.78 ± 30.16 μg/ml h) and MRT (2.07 ± 1.77 h), respectively (p<0.05). In mouse model, a single dose of ACV SLN was found to be equivalent to ACV administered as 400mg TID for 5 days in respect to lesion score and time of healing. Conclusion: The proof of concept of sustained-release acyclovir enabling administration as a single dose was thus demonstrated.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Gajanan Shinde ◽  
Mitesh Patel ◽  
Manan Mehta ◽  
Rajesh Kesarla ◽  
Ganesh Bangale

The aim of the present investigation was to formulate and characterize nanocrystal formulation of Repaglinide for diabetes therapy. Formulation was done by high pressure homogenization. HPH pressure and cycles range were screened by preliminary batches (T1 and T2). 5, 8, and 10 cycles and 500 to 1500 bar pressure range had kept for further investigation. Taguchi design was used to optimize type of polymer, % polymer concentration, number of cycles, and HPH pressure for nanocrystal formulation. Formulations were characterized for particle size, zeta potential, and in vitro drug release. Optimized formulation (NC 3) showed particle size of 187 nm, zeta potential of −29.4 mv, and % drug release of 80.58% and it was used for further study. Data analysis proved significant effects of factors on responses. Polydispersity index (PDI) Analysis of optimized formulation were found to be 0.248. SEM showed nanocrystal aggregation of drug, may be due to water removal process. DSC showed slight change in crystallinity, may be due to the presence of PEG 4000. Stability study was carried out for 3 months. It indicated no significant change in particle size and zeta potential. However, further studies in higher animals and human being need to be performed before this formulation can be commercially exploited.


2021 ◽  
Vol 11 (4) ◽  

Recently, solid lipid Nano-particles have received much attention by the researchers owing to its biodegradability, biocompatibility and the ability to deliver a wide range of drugs. The aim of the present study was to design Diltiazem solid lipid Nano-particles and to evaluate them. Diltiazem solid lipid Nano-particles were prepared by hot homogenization technique using different lipids (Tristearin, GMS and Comprital), soy lecithin as stabilizers and tween 80, Poloxamer as surfactants. The Nano-particles were evaluated for particle size & PDI, zeta potential, entrapment efficiency and in vitro drug release. The particle size ranged from 49.7 to 523.7 nm. PDI of all formulations were good within the range of 0.189 to 0.427. The zeta potential ranged from -10.5 to -29.6 Mv, Entrapment efficiency of all formulations were observed was in the range of 78.68 to 95.23 %. The cumulative percentage release of Diltiazem from different Diltiazem Nano-particles varied from 53.36 to 88.74% depending upon the drug lipid ratio and the type of lipid used. The average percentage of drug released from different SLNs after 24 hours showed in the following order: F9 (53.35%) < F6 (56.75%) < F4 (61.74%) < F7 (63.8%) < F5(67.77%) < F8(69.04%) < F3(75.31%) < F1(79.36%) <F2 (88.74%) respectively. The release kinetic studies showed that the release was first order diffusion controlled and the n values obtained from the Korsmeyer-Peppa’s model indicated the release mechanism was Quasi-Fickian type (n-value of 0.47). Keywords: Diltiazem, solid lipid Nano-particles, FTIR, in vitro drug release.


Author(s):  
RAJKUMAR ALAND ◽  
GANESAN M ◽  
RAJESWARA RAO P

Objective: Psoriasis is an unswervingly recurring, inflammatory, autoimmune disorder of the skin, disturbing about 2–5% of the world population. The main objective for this investigation is to develop and optimize the solid lipid nanoparticles (SLN) formulation of tazarotene for effective drug delivery. Methods: Tazarotene SLNs were fabricated by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency (EE). In view of the outcomes from the examinations of the responses acquired from Taguchi design, three diverse independent variables including sonication time (s), lipid to drug ratio (w/w), and surfactant concentration (%) were carefully chosen for further investigation utilizing central composite design. The lipid dynasan-116, surfactant poloxamer-188, and cosurfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, drug EE, zeta potential, in vitro drug release, and stability. Results: The prepared nanoformulations were evaluated for different parameters and found to be in an acceptable range. In vitro drug release of optimized SLN formulation (F1) was found to be 98.12±1.52%, whereas pure drug release was 42.12 after 60 min, and the major mechanism of drug release follows zero-order kinetics release data for optimized formulation (F1) with non-Fickian (anomalous) with a strong correlation coefficient (R2=0.98598) of Korsmeyer-Peppas model. Transmission electron microscopy analysis has demonstrated the presence of individual nanoparticles in spherical shape, and the results were also compatible with particle size measurements. The drug content of tazarotene gel formulation was found to 98.96±0.021%, and the viscosity of gel formulation at 5 rpm was found to be 5.98×103±0.34×103 cp. The release rate (flux) of tazarotene across the membrane and expunged skin diverges pointedly, which specifies the barrier nature of skin. The flux value for SLN based gel formulation (193.454±4.324 μg/cm2/h) was found to be higher than that for marketed gel (116.345±2.238 μg/cm2/h). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. Conclusion: From the obtained results, the topically oriented SLN-based gel formulation of tazarotene could be useful in providing effective and site-specific psoriasis treatment.


Sign in / Sign up

Export Citation Format

Share Document