scholarly journals Mass Measurement Using a System Containing an On-Off Relay with Dead Zone

Author(s):  
Takeshi MIZUNO ◽  
Minoru TAKEUCHI ◽  
Masaya TAKASAKI ◽  
Yuji ISHINO
Keyword(s):  
Author(s):  
Takeshi Mizuno ◽  
Minoru Takeuchi ◽  
Yuji Ishino ◽  
Masaya Takasaki

Relay feedback was applied to measuring mass even under weightless conditions. A measurement object is driven by a force-output actuator. The motion of the object is controlled by a relay feedback system. The used relay element has dead zone and switches force acting on the object in relation to the position of the measurement object. The mass of the object is determined from the time interval measurement of the on-state and off-state periods. An apparatus was developed for experimental study. It uses a voice coil motor as an actuator, and a pair of photo interrupters for detecting the switching positions. The effects of system parameters on measurement accuracy were studied experimentally. Under the tuned conditions, the measurement errors were within 0.2[%]. Measurement on a base moving freely was also carried out.


Author(s):  
M. Boublik ◽  
G. Thornton ◽  
G. Oostergetel ◽  
J.F. Hainfeld ◽  
J.S. Wall

Understanding the structural complexity of ribosomes and their role in protein synthesis requires knowledge of the conformation of their components - rRNAs and proteins. Application of dedicated scanning transmission electron microscope (STEM), electrical discharge of the support carbon film in an atmosphere of pure nitrogen, and determination of the molecular weight of individual rRNAs enabled us to obtain high resolution electron microscopic images of unstained freeze-dried rRNA molecules from BHK cells in a form suitable for evaluation of their 3-D structure. Preliminary values for the molecular weight of 28S RNA from the large and 18S RNA from the small ribosomal subunits as obtained by mass measurement were 1.84 x 106 and 0.97 x 106, respectively. Conformation of rRNAs consists, in general, of alternating segments of intramolecular hairpin stems and single stranded loops in a proportion which depends on their ionic environment, the Mg++ concentration in particular. Molecules of 28S RNA (Fig. 1) and 18S RNA (not shown) obtained by freeze-drying from a solution of 60 mM NH+4 acetate and 2 mM Mg++ acetate, pH 7, appear as partially unfolded coils with compact cores suggesting a high degree of ordered secondary structure.


1998 ◽  
Vol 37 (1) ◽  
pp. 215-222
Author(s):  
I. Guymer ◽  
R. O'Brien ◽  
O. Mark ◽  
P. Dennis

Previous studies of the effects of manholes on longitudinal dispersion has concentrated on the spreading of solutes. This papers presents new data describing the influence of a surcharged and free-flowing manhole structure on the longitudinal dispersion of a fine suspended material. The effects of benching within the manhole structure are also illustrated. Laser Induced Fluorescence (LIF) techniques have been used to provide a qualitative description of the mixing processes present within a surcharged manhole. Nephelometric results have provided estimates of the parameters required to simulate the mixing effects using either increase in variance or aggregated dead zone techniques. A preliminary attempt at describing these observations using available software is discussed and recommendations for future developments are made.


2020 ◽  
Vol 21 ◽  
Author(s):  
Zedong Xiang ◽  
Shaoping Wang ◽  
Haoran Li ◽  
Pingping Dong ◽  
Fan Dong ◽  
...  

Background:: Catalpol, an iridoid glycoside, is one of the richest bioactive components present in Rehmannia glutinosa. More and more metabolites of drugs have exhibit various pharmacological effects, thus providing guidance for clinical application. However, few researches have paid attention on the metabolism of catalpol. Objective:: This study aimed to establish a rapid and effective method to identify catalpol metabolites and evaluate the biotransformation pathways of catalpol in rats. Methods:: In this study, catalpol metabolites in rat urine, plasma and faeces were analyzed by UHPLC-Q-Exactive MS for the characterization of metabolism of catalpol. Based on high-resolution extracted ion chromatograms (HREICs) and parallel reaction monitoring mode (PRM), metabolites of catalpol were identified by comparing the diagnostic product ions (DPIs), chromatographic retention times, neutral loss fragments (NLFs) and accurate mass measurement with those of catalpol reference standard. Results: A total of 29 catalpol metabolites were detected and identified in both negative and positive ion modes. Nine metabolic reactions including deglycosylation, hydroxylation, dihydroxylation, hydrogenation, dehydrogenation, oxidation of methylene to ketone, glucuronidation, glycine conjugation and cysteine conjugation were proposed. Conclusion:: A rapid and effective method based on UHPLC-Q-Exactive MS was developed to mine the metabolism information of catalpol. Results of metabolites and biotransformation pathways of catalpol suggested that when orally administrated, catalpol was firstly metabolized into catalpol aglycone, after which phase Ⅰ and phase Ⅱ reactions occurred. However, hydrophilic chromatography-mass spectrometry still needed to further find the polar metabolites of catalpol.


Computation ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 82
Author(s):  
Alejandro Rincón ◽  
Gloria M. Restrepo ◽  
Fredy E. Hoyos

In this study, a novel robust observer-based adaptive controller was formulated for systems represented by second-order input–output dynamics with unknown second state, and it was applied to concentration tracking in a chemical reactor. By using dead-zone Lyapunov functions and adaptive backstepping method, an improved control law was derived, exhibiting faster response to changes in the output tracking error while avoiding input chattering and providing robustness to uncertain model terms. Moreover, a state observer was formulated for estimating the unknown state. The main contributions with respect to closely related designs are (i) the control law, the update law and the observer equations involve no discontinuous signals; (ii) it is guaranteed that the developed controller leads to the convergence of the tracking error to a compact set whose width is user-defined, and it does not depend on upper bounds of model terms, state variables or disturbances; and (iii) the control law exhibits a fast response to changes in the tracking error, whereas the control effort can be reduced through the controller parameters. Finally, the effectiveness of the developed controller is illustrated by the simulation of concentration tracking in a stirred chemical reactor.


Sign in / Sign up

Export Citation Format

Share Document