scholarly journals FLOW RESISTANCE DUE TO INTENSE BEDLOAD TRANSPORT

1984 ◽  
Vol 1 (19) ◽  
pp. 89
Author(s):  
Daniel M. Hanes

When water flows over a stationary bed the fluid motion is retarded by both skin the friction and local pressure gradient forces related to the roughness of the bed. If the bed itself is composed of discreet movable grains, the boundary is less clearly defined and the dynamics poorly understood (see Gust and Southard, 1983). Owen (1964) proposed that saltating grains (grains which lift off the bed, move through the fluid, and fall back to the bed without colliding with other grains) have the effect of increasing the frictional resistance of the bottom. At higher flow stages, Hanes and Bowen (1984) have suggested a model for bedload transport which is based upon the dynamics of collisional grain flows following Bagnold (1954, 1956). In such a collision dominated flow, it appears that the resistance of the bed to the overlying flow can be less than the resistance of a fixed bed to the same overlying flow. This result is consistent with the dynamics of rapid granular-fluid flows, as will be discussed below.

2021 ◽  
Vol 23 (3) ◽  
Author(s):  
D. Song ◽  
G. G. D. Zhou ◽  
Q. Chen

Author(s):  
S.A. Skladchikov ◽  
N.P. Savenkova ◽  
P.I. Vysikaylo ◽  
S.E. Avetisov ◽  
D.V. Lipatov ◽  
...  

The eye is a complex system of boundaries and fluids with different viscosities within the boundaries. At present, there are no experimental possibilities to thoroughly observe the dynamic 4D processes after one or another method of eye treatment is applied. The complexity of cumulative, i.e., focusing, and dissipative, i.e., scattering, convective and diffusion 4D fluxes of fluids in the eye requires 4D analytical and numerical models of fluid transfer in the human eyeball to be developed. The purpose of the study was to develop and then verify a numerical model of 4D cumulative-dissipative processes of fluid transfer in the eyeball. The study was the first to numerically evaluate the values of the characteristic time of the drug substance in the vitreous cavity until it is completely washed out, depending on the injection site; to visualize the paths of the vortex motion of the drug in the vitreous cavity; to determine the main parameters of the 4D fluid flows of the medicinal substance in the vitreous cavity, depending on the presence or absence of vitreous detachment from the wall of the posterior chamber of the eye. The results obtained are verified by the experimental data available to doctors. In the eye, as a partially open cumulative-dissipative system, Euler regions with high rates of cumulative flows and regions with low speeds or stagnant Lagrange flow zones are defined


2015 ◽  
Vol 3 (1) ◽  
pp. 113-138 ◽  
Author(s):  
L. Zhang ◽  
G. Parker ◽  
C. P. Stark ◽  
T. Inoue ◽  
E. Viparelli ◽  
...  

Abstract. The 1-D saltation–abrasion model of channel bedrock incision of Sklar and Dietrich (2004), in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise to unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation that specifically tracks the spatiotemporal variation in both bedload transport and alluvial thickness. It does so by relating the bedrock cover fraction to the ratio of alluvium thickness to bedrock macro-roughness, rather than to the ratio of bedload supply rate to capacity bedload transport. The new formulation (MRSAA) predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances, and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection–diffusion of a sediment pulse over an alluvial bed. A solution for alluvial–incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, thus blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial–bedrock reach downstream migrates upstream in the form of a "hidden knickpoint". A tectonically more complex case of rock uplift subject to a localized zone of subsidence (graben) yields a steady-state solution that is not attainable with the original saltation–abrasion model. A solution for the case of bedrock–alluvial coevolution upstream of an alluviated river mouth illustrates how the bedrock surface can be progressively buried not far below the alluvium. Because the model tracks the spatiotemporal variation in both bedload transport and alluvial thickness, it is applicable to the study of the incisional response of a river subject to temporally varying sediment supply. It thus has the potential to capture the response of an alluvial–bedrock river to massive impulsive sediment inputs associated with landslides or debris flows.


2021 ◽  
Vol 237 ◽  
pp. 03013
Author(s):  
Wenqiang Li ◽  
Hui Qi ◽  
Yongfeng Yang ◽  
Guojun Zhao ◽  
Rong Liu ◽  
...  

With the continuous development of west of China, a new kind of tunnel, namely spiral tunnel, has appeared in the expressway. Due to the special linear pattern, the resistance of airflow in spiral tunnel has been found to change, but there are few relevant researches at present. Therefore, numerical calculation method is used to study the variation of flow resistance in spiral pipe with different curvature. The results show that when the fluid flows in the spiral pipe, the wind speed is not uniformly distributed. The highest speed is not in the center of the pipe, but on the outside of the pipe, and the offset distance decreases with the increase of the radius of curvature. In addition, the change of flow resistance in spiral pipe is studied, and it is found that the change rate of flow resistance decreases with the increase of curvature radius. It shows that the radius of curvature is negatively correlated with the flow resistance.


Author(s):  
Reiko Koganei ◽  
Shigemasa Ando ◽  
Qinzhong Shi ◽  
Ichiro Hagiwara

Payloads of satellite are exposed on the severe acoustic environment at the process of lift-off and supersonic zone of a launcher. This acoustic environment excites the payload in high pressure and broad frequency band of random acoustical excitation, which may cause serious damage to the structures or instruments of the spacecraft inside. Space instruments are designed and verified to the acoustic environment by ground reverberant acoustic chamber in order to specify random vibration level at component interface and to verify the payloads are working in function and the structure does not have structural damage. The present load sound pressure specification assumes that the sound pressure interior fairing is uniformly distributed. In spacecraft system acoustic tests, local pressure increase occurs in the narrow gap between spacecraft primal structure and components facing toward the fairing wall. This acoustical environment load to the components differs from that the components were tested alone and the flight acoustic environment may not be actually simulated in the ground testing. It is important to clarify the mechanism of sound pressure increase in the narrow gap in order to predict the level of sound pressure increase. In this study, we focus to the investigation of the mechanism by basic experiment including acoustic testing and vibration modal survey. It is clarified that the main reason of the phenomenon is dominated by the acoustic cavity on the appropriate boundary condition rather than structure vibration. And more, we predict the frequency at which the sound pressure increase at the narrow gap and compare analysis results with experiment results by using Boundary Element Method (BEM).


Author(s):  
Zhi-Min Chen ◽  
W.G Price

This study focuses on two-dimensional fluid flows in a straight duct with free-slip boundary conditions applied on the channel walls y =0 and y =2 πN with N >1. In this extended wall-bounded fluid motion problem, secondary fluid flow patterns resulting from steady-state and Hopf bifurcations are examined and shown to be dependent on the choice of longitudinal wave numbers. Some secondary steady-state flows appear at specific wave numbers, whereas at other wave numbers, both secondary steady-state and self-oscillation flows coexist. These results, derived through analytical arguments and truncation series approximation, are confirmed by simple numerical experiments supporting the findings observed from laboratory experiments.


2015 ◽  
Vol 112 (45) ◽  
pp. E6086-E6095 ◽  
Author(s):  
Rizal F. Hariadi ◽  
Erik Winfree ◽  
Bernard Yurke

Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean’s environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sources of hydrodynamic shear encountered in the ocean are breaking waves and the bursting bubbles produced by such waves. On a microscopic scale, one expects the surface-tension–driven flows produced during bubble rupture to exhibit particularly high velocity gradients due to the small size scales and masses involved. However, little work has examined the strength of shear flow rates in commonly encountered ocean conditions. By using DNA nanotubes as a novel fluid flow sensor, we investigate the elongational rates generated in bursting films within aqueous bubble foams using both laboratory buffer and ocean water. To characterize the elongational rate distribution associated with a bursting bubble, we introduce the concept of a fragmentation volume and measure its form as a function of elongational flow rate. We find that substantial volumes experience surprisingly large flow rates: during the bursting of a bubble having an air volume of 10 mm3, elongational rates at least as large as ϵ˙=1.0×108 s−1 are generated in a fragmentation volume of ∼2×10−6μL. The determination of the elongational strain rate distribution is essential for assessing how effectively fluid motion within bursting bubbles at the ocean surface can shear microscopic particles and microorganisms, and could have driven the self-replication of a protobiont.


1995 ◽  
Vol 290 ◽  
pp. 279-298 ◽  
Author(s):  
N. Riley ◽  
M. F. Wybrow

We consider the fluid motion induced when an elliptic cylinder performs small-amplitude torsional oscillations about an axis parallel to a generator which passes through either the centre or a point on the major or minor axis of the ellipse. In common with other fluid flows dominated by oscillatory motion, a time-independent, or steady streaming flow develops. This steady streaming exhibits several unusual and unexpected features, which are confirmed by experiment.


2009 ◽  
Vol 628-629 ◽  
pp. 203-208
Author(s):  
Q. Wei ◽  
B.D. Jing ◽  
D.H. Bao ◽  
L.J. Yang

Hydraulic components are widely used in mechanical industry. To comply with the requirements of modern products for high quality and performance, hydraulic components are required to improve their own efficiency and controlling capability. The hydraulic pump, as a main element for energy conversion, exerts tremendous influence on the overall output efficiency of a product. The first is the energy loss analysis of a hydraulic pump, which is aimed to enable the pump to achieve a higher efficiency. Theoretical calculations may deviate to some extent from the experimental data as the equation of fluid motion is calculated based upon the ideal fluid; moreover, the leakage at the tooth meshing though at little amount, the friction loss between the shaft and its bearings, and the friction loss due to the meshing of gears were not considered during modeling. To determine the optimum clearance, it is necessary to take into account the workmanship factors, thermal expansion and contraction, frictional resistance, working conditions and any other factors as a whole. This was followed by obtaining the optimum clearance at the minimal power loss from the energy efficient perspective. These above-mentioned conclusions have some instructional significance over the design of the hydraulic pump.


Sign in / Sign up

Export Citation Format

Share Document