scholarly journals HYDRAULIC PERFORMANCE OF ELASTOMERIC BONDED PERMEABLE REVETMENTS AND SUBSOIL RESPONSE TO WAVE LOADS

2011 ◽  
Vol 1 (32) ◽  
pp. 22
Author(s):  
Hocine Oumeraci ◽  
Tijl Staal ◽  
Saskia Pfoertner ◽  
Matthias Kudella ◽  
Stefan Schimmels ◽  
...  

Elastomeric bonded permeable revetments, also called PBA (Polyurethane bonded aggregate) revetments, are highly porous structures made of mineral aggregates (e.g. crushed stones) which are durably and elastically bonded by polyurethane (PU). Despite their numerous advantages as compared to conventional revetments and the large experience available from more than 25 pilot projects, physically-based design formulae to predict their hydraulic performance, wave loading and response are still lacking. Therefore, the present study aims at improving the understanding of the processes involved in the interaction between wave, revetment and foundation, based on large-scale model tests performed in the Coastal Research Centre (FZK), Hannover/Germany, and to provide prediction formulae/diagrams. This paper is focused on the prediction of the hydraulic performance (wave reflection, wave run-up and run-down) and the response of the sand core (pore pressure and effective stress) beneath the revetment for a wide range of wave conditions, including the analysis of an observed failure due to transient soil liquefaction.

2011 ◽  
Vol 1 (32) ◽  
pp. 17
Author(s):  
Gisa Ludwigs ◽  
Hocine Oumeraci ◽  
Tijl Staal

Permeable revetments made of bonded mineral aggregates may increasingly be favoured compared to standard revetments. However, the physical processes associated with the water–structure–soil-interaction for a wide range of wave conditions are still not well understood. Therefore, systematic large-scale model tests have been performed in the Large Wave Flume (GWK) of the Coastal Research Centre (FZK) in Hannover, with the intention of improving the understanding of these processes.


2013 ◽  
Vol 72 ◽  
pp. 69-79 ◽  
Author(s):  
J. Ramirez ◽  
P. Frigaard ◽  
T. Lykke Andersen ◽  
L. de Vos

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jialong Jiao ◽  
Huilong Ren ◽  
Shuzheng Sun ◽  
Christiaan Adika Adenya

Ship hydroelastic vibration is an issue involving mutual interactions among inertial, hydrodynamic, and elastic forces. The conventional laboratory tests for wave-induced hydroelastic vibrations of ships are performed in tank conditions. An alternative approach to the conventional laboratory basin measurement, proposed in this paper, is to perform tests by large-scale model measurement in real sea waves. In order to perform this kind of novel experimental measurement, a large-scale free running model and the experiment scheme are proposed and introduced. The proposed testing methodology is quite general and applicable to a wide range of ship hydrodynamic experimental research. The testing procedure is presented by illustrating a 5-hour voyage trial of the large-scale model carried out at Huludao harbor of China in August 2015. Hammer tests were performed to identify the natural frequencies of the ship model at the beginning of the tests. Then a series of tests under different sailing conditions were carried out to investigate the vibrational characteristics of the model. As a postvoyage analysis, load, pressure, acceleration, and motion responses of the model are studied with respect to different time durations based on the measured data.


Author(s):  
Lisham Bonakdar ◽  
Hocine Oumeraci

Wave loads on a slender pile within a group of piles are studied by means of (i) large-scale laboratory tests carried out in the Large Wave Flume (GWK) of the Coastal Research Centre (FZK) in Hannover, and (ii) small scale experiments performed in 2 m-wide wave flume of Leichtweiss-Institute for Hydraulic Engineering and Water Resources (LWI), in Braunschweig, Germany. The small scale model tests (LWI) were scaled down (1:6.5) by Froude law from the large scale model tests (GWK). Scale and model effects are examined by comparing the results of small and large scale laboratory tests.


2016 ◽  
Vol 53 (2) ◽  
pp. 196-209 ◽  
Author(s):  
Abhijeet Swain ◽  
Priyanka Ghosh

This paper presents an experimental study on the dynamic interaction effect of closely spaced square foundations under machine vibration. Under a dynamic condition, a number of large-scale model tests were conducted in the field, which includes a wide range of study on the isolated as well as interacting footing response resting on the local soil available at Kanpur, India. The dynamic interaction of different combinations (size) of two-footing assemblies was investigated by inducing vertical harmonic load on one of the footings (active footing), while the other footing (passive footing) was loaded with static weight only. The active footing was excited with different magnitudes of dynamic loading and the response was recorded for both footings, placed at a different clear spacing (S). The results are compiled and shown as the variation of displacement amplitude with frequency. The transmission ratio that predicts the effect of dynamic excitation of the active footing on the passive one is determined for the interacting footings and plotted with respect to frequency ratio.


Author(s):  
Lorenzo Cappietti ◽  
Irene Simonetti ◽  
Andrea Esposito ◽  
Maximilian Streicher ◽  
Andreas Kortenhaus ◽  
...  

Wave-Overtopping loads on vertical walls, such as those located on top of a dike, have been investigated in several small-scale experiments in the past. A large-scale validation for a mild foreshore situation is still missing. Hence the WALOWA (WAve LOads on WAlls) experimental campaign was carried out to address this topic. This paper, first presents a description of the large-scale model, the measurement set-up and the experimental methodologies, then it focuses on the layer thicknesses and velocities of the flows created on the promenade by the wave overtopping. A set of resistive wave gauges, ultrasonic distance sensors and velocimeters have been used to conduct these measurements. Preliminary data analysis and results, related to a 1000 irregular waves long test, are discussed. The momentum flux of these flows is studied and its implications, for the wave-overtopping loads acting on the vertical walls, are highlighted.


2012 ◽  
Vol 1 (33) ◽  
pp. 45 ◽  
Author(s):  
Sven Liebisch ◽  
Juan Carlos Alcérreca Huerta ◽  
Andreas Kortenhaus ◽  
Hocine Oumeraci

The porosity and roughness of bonded revetments are both crucial for the hydraulic performance and the wave loading of the revetment and its foundation, and thus for the stability and durability of the entire structure. This is briefly shown by the selected results of a tentative comparative analysis of two large-scale test series performed in the Large Wave Flume (GWK) Hanover with two significantly different revetments: a highly porous and rough polyurethane bonded aggregate (PBA) revetment and an almost impermeable and relatively smooth interlocked pattern placed block (IPPB) revetment. These results motivated the initiation of the three years research project BoPoRe (Bonded Porous Revetments) which has the primary objective to investigate more systematically and separately the relative importance of both porosity and roughness for different slope steepnesses. This project is briefly introduced and the first results of preliminary scale model tests using 9 configurations for the porosity and roughness of the revetment subject to a wide range of wave conditions (surf similarity parameters 0.93-7.21) are briefly discussed.


Author(s):  
Joachim Gru¨ne ◽  
Uwe Sparboom ◽  
Reinold Schmidt-Koppenhagen ◽  
Zeya Wang ◽  
Hocine Oumeraci

An innovative scour protection for monopile structures was proposed by using geotextile sand containers in a research programme started recently. Large-scale model tests on the stability of such alternative scour protection are being performed in the Large Wave Channel (GWK) of the Coastal Research Centre (FZK). First results are reported from basic test series performed with single geotextile sand containers and container groups with different container weights, varied in sizes and percentages of filling. Further an empirical approach on the stability of sand containers is estimated as a first approximation from the results.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document