scholarly journals LONG TERM MORPHOLOGICAL EVOLUTION OF THE GOLD COAST SEAWAY: HISTORICAL AND NUMERICAL ANALYSIS

2012 ◽  
Vol 1 (33) ◽  
pp. 28 ◽  
Author(s):  
Mahnaz Sedigh ◽  
Rodger Tomlinson ◽  
Aliasghar Golshani ◽  
Nick Cartwright

The Gold Coast Seaway is one of two main tidal inlets located on the Australian East coast at a longitude of 27°56’10S and a latitude of 153°25’60E linking an intra-coastal waterway known as The Broadwater with the Pacific Ocean.. The reasons for construction of the Gold Coast Seaway and the associated sand by-passing system in the 1980s were stabilising the entrance, maintaining a safe navigable channel, preventing shoreline erosion to the north and maintaining an adequate beach width to the south.

1998 ◽  
Vol 55 (4) ◽  
pp. 937-948 ◽  
Author(s):  
D W Welch ◽  
Y Ishida ◽  
K Nagasawa

Ocean surveys show that extremely sharp thermal boundaries have limited the distribution of sockeye salmon (Oncorhynchus nerka) in the Pacific Ocean and adjacent seas over the past 40 years. These limits are expressed as a step function, with the temperature defining the position of the thermal limit varying between months in an annual cycle. The sharpness of the edge, the different temperatures that define the position of the edge in different months of the year, and the subtle variations in temperature with area or decade for a given month probably all occur because temperature-dependent metabolic rates exceed energy intake from feeding over large regions of otherwise acceptable habitat in the North Pacific. At current rates of greenhouse gas emissions, predicted temperature increases under a doubled CO2 climate are large enough to shift the position of the thermal limits into the Bering Sea by the middle of the next century. Such an increase would potentially exclude sockeye salmon from the entire Pacific Ocean and severely restrict the overall area of the marine environment that would support growth.


2021 ◽  
Vol 13 (5) ◽  
pp. 1013
Author(s):  
Kuo-Wei Yen ◽  
Chia-Hsiang Chen

Remote sensing (RS) technology, which can facilitate the sustainable management and development of fisheries, is easily accessible and exhibits high performance. It only requires the collection of sufficient information, establishment of databases and input of human and capital resources for analysis. However, many countries are unable to effectively ensure the sustainable development of marine fisheries due to technological limitations. The main challenge is the gap in the conditions for sustainable development between developed and developing countries. Therefore, this study applied the Web of Science database and geographic information systems to analyze the gaps in fisheries science in various countries over the past 10 years. Most studies have been conducted in the offshore marine areas of the northeastern United States of America. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. This study also found that research hotspots of satellite RS applications in fisheries were mainly conducted in (1) the northeastern sea area in the United States, (2) the high seas area of the North Atlantic Ocean, (3) the surrounding sea areas of France, Spain and Portugal, (4) the surrounding areas of the Indian Ocean and (5) the East China Sea, Yellow Sea and Bohai Bay sea areas to the north of Taiwan. A comparison of publications examining the three major oceans indicated that the Atlantic Ocean was the most extensively studied in terms of RS applications in fisheries, followed by the Indian Ocean, while the Pacific Ocean was less studied than the aforementioned two regions. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. The Atlantic Ocean and the Indian Ocean have been the subjects of many local in-depth studies; in the Pacific Ocean, the coastal areas have been abundantly investigated, while offshore local areas have only been sporadically addressed. Collaboration and partnership constitute an efficient approach for transferring skills and technology across countries. For the achievement of the sustainable development goals (SDGs) by 2030, research networks can be expanded to mitigate the research gaps and improve the sustainability of marine fisheries resources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Ishida ◽  
Ryosuke S. Isono ◽  
Jun Kita ◽  
Yutaka W. Watanabe

AbstractThis study examines long-term ocean pH data to evaluate ocean acidification (OA) trends at two coastal research institutions located on the Sea of Japan and the Pacific Ocean. These laboratories are located away from the influences of large rivers and major industrial activity. Measurements were performed daily for the past 30 years (1980s–2010s). The average annual ocean pH for both sites showed generally negative trends. These trends were – 0.0032 and – 0.0068 year–1 (p < 0.001) at the Sea of Japan and Pacific Ocean sites, respectively. The trends were superimposed onto approximately 10-year oscillations, which appear to synchronize with the ocean current periodicity. At the Sea of Japan site, the ocean pH in the summer was higher, and the rate of OA was higher than during other seasons. Our results suggest that seasonality and ocean currents influence OA in the coastal areas of open oceans and can affect the coastal regions of marginal seas.


Author(s):  
Gennady M. Kamenev

An expanded description of a little-known arctic species Montacuta spitzbergensis from the Sea of Okhotsk with new data on its morphology, ecology and geographical distribution is given. This is the first record of M. spitzbergensis from the north-western Pacific. It differs from other species of Montacuta in its large (to 8.4 mm), elongate–ovate, thick shell with wide, slightly curved hinge plate, wide, short, and shallow resilifer, and weakly developed external ligament. This species occurs in the Arctic Ocean (Spitsbergen, Barents, Kara, Laptev and Chukchi Seas) and the Pacific Ocean (Sea of Okhotsk) at depths from 9 to 232 m at a bottom temperature from −1.62°C to +2.50°C. The hinge structure of the type species of the genera Montacuta and Tellimya is also discussed.


2021 ◽  
Author(s):  
M.P. Charó

Deposits of different Quaternary marine transgressions are largely exposed in the Argentine north Patagonian littoral (39°15′S–41°02′S), south of the Buenos Aires and north of Río Negro provinces. The malacological associations of 84 sites were studied. Among them, 31 belong to Pleistocene deposits of the interglacials ≥ MIS 9, MIS 7, MIS 5e, 29 to Holocene deposits of the interglacial MIS 1, and 24 sites of modern beaches. These sites yielded 7385 fossils among valves and shells, of 78 species (42 bivalves and 36 gastropods), including 11 micromolluskan species. The record of the bivalves Crassostrea rhizophorae in the south of the Buenos Aires Province, and Anomalocardia brasiliana (both currently inhabiting lower latitudes), and very likely the gastropod Tegula atra (inhabiting today the Pacific Ocean) in the north of Río Negro Province, suggests that interglacials MIS 7, MIS 5e and MIS 1 were warmer than today. However, the associations determined for the studied interglacials have not changed in their composition, but in abundance of species, except for the latitudinal shifts of the three mentioned species, and the presence of cold to temperate water taxa since the MIS 1 in the ecotonal area of the north of Río Negro Province. Changes in the associations of northern Patagonia during the Quaternary derived from global changes (sea surface temperature, salinity, etc.), and the existence of habitat heterogeneity in each of the areas, that enabled the co-existence of different bivalve and gastropod species of the local benthic marine malacofauna.


2014 ◽  
Vol 11 (4) ◽  
pp. 977-993 ◽  
Author(s):  
I. Ruvalcaba Baroni ◽  
R. P. M. Topper ◽  
N. A. G. M. van Helmond ◽  
H. Brinkhuis ◽  
C. P. Slomp

Abstract. The geological record provides evidence for the periodic occurrence of water column anoxia and formation of organic-rich deposits in the North Atlantic Ocean during the mid-Cretaceous (hereafter called the proto-North Atlantic). Both changes in primary productivity and oceanic circulation likely played a role in the development of the low-oxygen conditions. Several studies suggest that an increased input of phosphorus from land initiated oceanic anoxic events (OAEs). Other proposed mechanisms invoke a vigorous upwelling system and an ocean circulation pattern that acted as a trap for nutrients from the Pacific Ocean. Here, we use a detailed biogeochemical box model for the proto-North Atlantic to analyse under what conditions anoxia could have developed during OAE2 (94 Ma). The model explicitly describes the coupled water, carbon, oxygen and phosphorus cycles for the deep basin and continental shelves. In our simulations, we assume the vigorous water circulation from a recent regional ocean model study. Our model results for pre-OAE2 and OAE2 conditions are compared to sediment records of organic carbon and proxies for photic zone euxinia and bottom water redox conditions (e.g. isorenieratane, carbon/phosphorus ratios). Our results show that a strongly elevated input of phosphorus from rivers and the Pacific Ocean relative to pre-OAE2 conditions is a requirement for the widespread development of low oxygen in the proto-North Atlantic during OAE2. Moreover, anoxia in the proto-North Atlantic is shown to be greatly influenced by the oxygen concentration of Pacific bottom waters. In our model, primary productivity increased significantly upon the transition from pre-OAE2 to OAE2 conditions. Our model captures the regional trends in anoxia as deduced from observations, with euxinia spreading to the northern and eastern shelves but with the most intense euxinia occurring along the southern coast. However, anoxia in the central deep basin is difficult to achieve in the model. This suggests that the ocean circulation used in the model may be too vigorous and/or that anoxia in the proto-North Atlantic was less widespread than previously thought.


1843 ◽  
Vol 133 ◽  
pp. 113-143 ◽  

In the present number of these Contributions, I resume the consideration of Captain Sir Edward Belcher’s magnetic observations, of which the first portion, viz. that of the stations on the north-west coast of America and adjacent islands, was discussed in No. II. The return to England of Her Majesty’s ship Sulphur by the route of the Pacific Ocean, and her detention for some months in the China Seas, have enabled Sir Edward Belcher to add magnetic determinations at thirty-two stations to those at the twenty-nine stations previously recorded. In the notice of the earlier observations, a provisional coefficient was employed in the formula for the temperature corrections of the results with the intensity needles, as no experiments had then been made for the determination of their individual co­efficients. As soon therefore as Sir Edward Belcher had completed the observation of the times of vibration of those needles at Woolwich, as the concluding station of the series made with them, Lieut. Riddell, R. A. undertook the determination of their several coefficients, which was performed in the manner and with the results described in the subjoined memorandum.


Sign in / Sign up

Export Citation Format

Share Document