scholarly journals NUMERICAL INVESTIGATION OF BORE HOLE FILLING VOLUME IN A COASTAL AREA

Author(s):  
Feddy Adong ◽  
Anne-Claire Bennis ◽  
Dominique Mouazé

A numerical study is carried out to determine the parameters controlling the filling of a bore hole in Alderney Race. Our final goal is to identify the configuration minimizing the filling. We performed a one-way coupling between a coastal circulation model and a discrete element model for that purpose. Simulations used spherical particles and a monopile technology. We show that: as long as the distance between the hole and the residuals remains smaller than twenty meters, the flow direction plays a negligible role; interaction between moving particles and bottom roughness leads to a slight increase of the filling; the impact of ambient sediments strongly depends on seabed morphology and current effects.

2009 ◽  
Vol 409 ◽  
pp. 154-160 ◽  
Author(s):  
Petr Frantík ◽  
Zbyněk Keršner ◽  
Václav Veselý ◽  
Ladislav Řoutil

The paper is focussed on numerical simulations of the fracture of a quasi-brittle specimen due to its impact onto a fixed rigid elastic plate. The failure of the specimen after the impact is modelled in two ways based on the physical discretization of continuum: via physical discrete elements and pseudo-particles. Advantages and drawbacks of both used methods are discussed. The size distribution of the fragments of the broken specimen resulting from physical discrete element model simulation follows a power law, which indicates the ability of the numerical model to identify the fractal nature of the fracture. The pseudo-particle model, on the other side, can successfully predict the kinematics of the fragments of the specimen under impact failure.


2021 ◽  
Author(s):  
Mohi U. Rahamat Ullah

Targeted energy transfer (TET) refers to the spatial transfer of energy between a primary structure of interest and isolated oscillators called the energy sink (ES). In this work, the primary structure of interest is a slender beam modeled by the Euler-Bernoulli theory, and the ES is a single-degree-of-freedom oscillator with either linear or cubic nonlinear stiffness property. The objective of this study is to characterize the TET and the effectiveness of ES under impact and periodic excitations. By using the scientific computation package, MATLAB, numerical simulations are carried out based on excitations of various strength and locations. Both time and frequency domain characterizations are used. For the impact excitation, the ES with the cubic nonlinear stiffness property is more superior to the linear oscillator in that larger percentage of the impact energy can be dissipated there. The main energy transfer was found to be due to a 3- to-1 frequency coupling between the first bending mode and the ES. For the periodic excitation, however, both linear and nonlinear ES exhibit generally poorer performance than the case with the impact excitation. Future works should focus on the frequency-energy relationship of the periodic solution of the underlying Hamiltonian, as well as using finite element model to verify the simulation results.


2012 ◽  
Vol 488-489 ◽  
pp. 8-13 ◽  
Author(s):  
S.M.R. Khalili ◽  
M. Assar ◽  
R. Eslami Farsani ◽  
I. Hajiyousefi

Aircraft structures are frequently subjected to impacts from objects such as runway debris and birds. In new aircraft structural design, Fiber Metal Laminates (FMLs) play a significant role due to their excellent mechanical properties, particularly the impact properties. In this study, the aircraft sandwich wing with FML face-sheets are analyzed by finite element model for simulating the bird strike. The numerical simulations of bird strike impact are performed adopting a lagrangian approach to design the wing by MSC/PATRAN FE code. The numerical obtained results are compared with the results in the literature for validation of the model. The effect of fiber orientations, fiber types, metal types in FML face sheets in sandwich wing on impact responses are investigated. The impact responses are illustrated by displacement history, contact force history and energy absorption. According to these results, the sandwich panel with FML skin is suitable structure for energy absorption (that is the most important factor in impact phenomena). The lay-ups with titanium metal layer with aramid fibers are the best.


2020 ◽  
pp. 096739112097008
Author(s):  
Mengjia Li ◽  
Puhui Chen

A finite element model with periodic boundary conditions was developed to investigate the influence of different Z-pin parameters including diameter, spacing, and insertion angle of Z-pin on the elastic properties of composite laminates. Benchmark tests were carried out to verify the FE model and a series of parametric analyses were subsequently performed. In general, all the elastic moduli, excluding the through-thickness modulus ( Ez), decreased while Ez increased nonlinearly with increasing Z-pin diameter and decreasing spacing. The reduction of Ey (transverse modulus) was approximately 40% of that of Ex (longitudinal modulus), while the reduction of Gxy is similar to that of Ex. Besides, Gxz and Gyz were reduced by approximately half of the reduction of Gxy. Although the impact of insertion angle was obvious on Ez, it was negligible on the other five moduli.


2014 ◽  
Vol 142 (5) ◽  
pp. 1997-2017 ◽  
Author(s):  
Peter D. Düben ◽  
Peter Korn

Abstract Grids of variable resolution are of great interest in atmosphere and ocean modeling as they offer a route to higher local resolution and improved solutions. On the other hand there are changes in grid resolution considered to be problematic because of the errors they create between coarse and fine parts of a grid due to reflection and scattering of waves. On complex multidimensional domains these errors resist theoretical investigation and demand numerical experiments. With a low-order hybrid continuous/discontinuous finite-element model of the inviscid and viscous shallow-water equations a numerical study is carried out that investigates the influence of grid refinement on critical features such as wave propagation, turbulent cascades, and the representation of geostrophic balance. The refinement technique the authors use is static h refinement, where additional grid cells are inserted in regions of interest known a priori. The numerical tests include planar and spherical geometry as well as flows with boundaries and are chosen to address the impact of abrupt changes in resolution or the influence of the shape of the transition zone. For the specific finite-element model under investigation, the simulations suggest that grid refinement does not deteriorate geostrophic balance and turbulent cascades and the shape of mesh transition zones appears to be less important than expected. However, the results show that the static local refinement is able to reduce the local error, but not necessarily the global error and convergence properties with resolution are changed. The relatively simple tests already illustrate that grid refinement has to go along with a simultaneous change of the parameterization schemes.


1991 ◽  
Vol 113 (3) ◽  
pp. 395-400 ◽  
Author(s):  
M. A. de los Santos ◽  
S. Cardona ◽  
J. Sa´nchez-Reyes

This article presents a simulation model for reciprocating hermetic compressors. The acoustical behavior of both admission and discharge circuits is analyzed by invoking the discrete element model. Cavities are considered as elastic elements and ducts as rigid elements with inertia according to this model. Reed valves are modeled as systems of three degrees of freedom, and are studied by using modal analysis. The percussive version of Lagrange equations is used to describe the impact between valves and stops or seats. Results from the theoretical model are checked with those experimentally obtained for a real compressor.


Mechanika ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 193-200
Author(s):  
Jin HU ◽  
Hao ZHANG ◽  
Jie ZHANG ◽  
Shiwei NIU ◽  
Wenbo CAI

Particles erosion wear always consist in the intersection of tee pipe, which is an inevitable problem. In order to obtain the erosion wear characteristics of two-phase flow tee pipe, several cases of different inlet diameters are investigated numerically in this paper. Euler-Lagrange method is adopted to describe the gas-solid two-phase flow and the finite volume method is adopted to solve the erosion results. Meshing O-type grids to obtain the reasonable boundary layer in ICEM CFD. By verifying and comparing the turbulence intensity and velocity of the six meshes, a reasonable finite element model is selected. Intersection, the severest erosion region, is the location where the gas flow direction changes. The inlet diameter determines the region of the impact particles directly hitting the wall. When the inlet diameter is smaller, the erosion of the intersection is severer. As the inlet velocity increases, both the erosion of the intersection and the outlet pipe become severer. However, there are only the erosion scars at the intersection are affected, with the increase of particle mass flow.


2021 ◽  
Author(s):  
Mohi U. Rahamat Ullah

Targeted energy transfer (TET) refers to the spatial transfer of energy between a primary structure of interest and isolated oscillators called the energy sink (ES). In this work, the primary structure of interest is a slender beam modeled by the Euler-Bernoulli theory, and the ES is a single-degree-of-freedom oscillator with either linear or cubic nonlinear stiffness property. The objective of this study is to characterize the TET and the effectiveness of ES under impact and periodic excitations. By using the scientific computation package, MATLAB, numerical simulations are carried out based on excitations of various strength and locations. Both time and frequency domain characterizations are used. For the impact excitation, the ES with the cubic nonlinear stiffness property is more superior to the linear oscillator in that larger percentage of the impact energy can be dissipated there. The main energy transfer was found to be due to a 3- to-1 frequency coupling between the first bending mode and the ES. For the periodic excitation, however, both linear and nonlinear ES exhibit generally poorer performance than the case with the impact excitation. Future works should focus on the frequency-energy relationship of the periodic solution of the underlying Hamiltonian, as well as using finite element model to verify the simulation results.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Guang-jian Liu ◽  
Shan-lin Li ◽  
Zong-long Mu ◽  
Wen Chen ◽  
Lei-bo Song ◽  
...  

Rockburst of deep roadway was induced by the superposition of mine earthquake disturbance and high static stress exceeding the limit strength of coal-rock mass. To study the roadway impact instability characteristics caused by mine earthquake disturbance and to propose an optimized support scheme, the discrete element model of the roadway structure was established based on the 1305 working face of the Zhaolou Coal Mine. The influence of mine earthquake amplitude and hypocenter location on the roadway was analyzed. The mesocrack evolution characteristics of the roadway were simulated and reproduced. Characteristics of stress field, crack field, displacement field, and energy field of the disturbed roadway with different support schemes were studied. The results showed that the greater the amplitude of the mine earthquake was, the severer the roadway impact failure was. The upper and left hypocenters had a significant influence on the roadway. The superposition of the high static stress and the dynamic stress due to the far-field mine earthquake resulted in the impact instability of coal-rock mass around the roadway, causing severe roof subsidence as well as rib and bottom heave. The evolution of tensile cracks caused the severe impact failure of roadway from a mesoscopic perspective. Using the flexible support to reinforce the roadway retarded the stress decline in roof and rib, improved the self-stability, reduced the number of near-field cracks, and decreased the displacement. Meanwhile, it allowed the roof and rib deformation, which was conducive to releasing elastic energy in surrounding rocks and reducing mine earthquake energy. The cracks and deformation in the floor were controlled by using the floor bolt. The optimal support scheme for a roadway to resist mine earthquake disturbance was proposed: “bolt-cable-mesh-steel strip-π-beam + floor bolt.” The research results have a specific guiding significance for the support of the coal mine roadway.


Sign in / Sign up

Export Citation Format

Share Document