scholarly journals LONG-TERM, ENSEMBLE, DATA-ASSIMILATED SHORELINE CHANGE MODELING

Author(s):  
Sean Vitousek ◽  
Laura Cagigal ◽  
Jennifer Montano ◽  
Ana Rueda ◽  
Fernando Mendez ◽  
...  

We present an ensemble Kalman filter shoreline change model to predict long-term coastal evolution due to waves, sea-level rise, and other natural and anthropogenic processes responsible for sediment transport. The model utilizes ensemble simulations to improve both reliability (via data assimilation) and uncertainty quantification. Coastal change projections exhibit significant differences when simulated with and without ensemble wave conditions. Many long-term coastal change projections rely on a single realization of the future wave climate, often derived from atmospheric conditions simulated by a global climate model. Yet, the single realization approach does not account for the stochastic nature of future wave conditions across a variety of temporal scales (e.g., daily, weekly, seasonally, and interannually). Here, by applying ensemble time series of wave forcing conditions, we demonstrate a sizable increase in model uncertainty compared with the unrealistic case of model projections based on a single realization (e.g., a single time series) of wave forcing.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/V-VwC-cIiQ0

2020 ◽  
Author(s):  
Gabriele Schwaizer ◽  
Lars Keuris ◽  
Thomas Nagler ◽  
Chris Derksen ◽  
Kari Luojus ◽  
...  

<p>Seasonal snow is an important component of the global climate system. It is highly variable in space and time and sensitive to short term synoptic scale processes and long term climate-induced changes of temperature and precipitation. Current snow products derived from various satellite data applying different algorithms show significant discrepancies in extent and snow mass, a potential source for biases in climate monitoring and modelling. The recently launched ESA CCI+ Programme addresses seasonal snow as one of 9 Essential Climate Variables to be derived from satellite data.</p><p>In the snow_cci project, scheduled for 2018 to 2021 in its first phase, reliable fully validated processing lines are developed and implemented. These tools are used to generate homogeneous multi-sensor time series for the main parameters of global snow cover focusing on snow extent and snow water equivalent. Using GCOS guidelines, the requirements for these parameters are assessed and consolidated using the outcome of workshops and questionnaires addressing users dealing with different climate applications. Snow extent product generation applies algorithms accounting for fractional snow extent and cloud screening in order to generate consistent daily products for snow on the surface (viewable snow) and snow on the surface corrected for forest masking (snow on ground) with global coverage. Input data are medium resolution optical satellite images (AVHRR-2/3, AATSR, MODIS, VIIRS, SLSTR/OLCI) from 1981 to present. An iterative development cycle is applied including homogenisation of the snow extent products from different sensors by minimizing the bias. Independent validation of the snow products is performed for different seasons and climate zones around the globe from 1985 onwards, using as reference high resolution snow maps from Landsat and Sentinel- 2as well as in-situ snow data following standardized validation protocols.</p><p>Global time series of daily snow water equivalent (SWE) products are generated from passive microwave data from SMMR, SSM/I, and AMSR from 1978 onwards, combined with in-situ snow depth measurements. Long-term stability and quality of the product is assessed using independent snow survey data and by intercomparison with the snow information from global land process models.</p><p>The usability of the snow_cci products is ensured through the Climate Research Group, which performs case studies related to long term trends of seasonal snow, performs evaluations of CMIP-6 and other snow-focused climate model experiments, and applies the data for simulation of Arctic hydrological regimes.</p><p>In this presentation, we summarize the requirements and product specifications for the snow extent and SWE products, with a focus on climate applications. We present an overview of the algorithms and systems for generation of the time series. The 40 years (from 1980 onwards) time series of daily fractional snow extent products from AVHRR with 5 km pixel spacing, and the 20-year time series from MODIS (1 km pixel spacing) as well as the coarse resolution (25 km pixel spacing) of daily SWE products from 1978 onwards will be presented along with first results of the multi-sensor consistency checks and validation activities.</p>


2019 ◽  
Author(s):  
Mario Krapp ◽  
Robert Beyer ◽  
Stephen L. Edmundson ◽  
Paul J. Valdes ◽  
Andrea Manica

Abstract. A detailed and accurate reconstruction of the past climate is essential in understanding the interactions between ecosystems and their environment through time. We know that climatic drivers have shaped the distribution and evolution of species, including our own, and their habitats. Yet, spatially-detailed climate reconstructions that continuously cover the Quaternary do not exist. This is mainly because no paleoclimate model can reconstruct regional-scale dynamics over geological time scales. Here we develop a statistical emulator, the Global Climate Model Emulator (GCMET), which reconstructs the climate of the last 800 000 years with unprecedented spatial detail. GCMET captures the temporal dynamics of glacial-interglacial climates as an Earth System Model of Intermediate Complexity would whilst resolving the local dynamics with the accuracy of a Global Climate Model. It provides a new, unique resource to explore the climate of the Quaternary, which we use to investigate the long-term stability of major habitat types. We identify a number of stable pockets of habitat that have remained unchanged over the last 800 thousand years, acting as potential long-term evolutionary refugia. Thus, the highly detailed, comprehensive overview of climatic changes through time delivered by GCMET provides the needed resolution to quantify the role of long term habitat change and fragmentation in an ecological and anthropological context.


2016 ◽  
Author(s):  
Michiel Helsen ◽  
Roderik Van de Wal ◽  
Thomas Reerink ◽  
Richard Bintanja ◽  
Marianne Sloth Madsen ◽  
...  

Abstract. The albedo of the surface of ice sheets changes as a function of time, due to the effects of deposition of new snow, ageing of dry snow, melting and runoff. Currently, the calculation of the albedo of ice sheets is highly parameterized within the Earth System Model EC-Earth, by taking a constant value for areas with thick perennial snow cover. This is one of the reasons that the surface mass balance (SMB) of the Greenland ice sheet (GrIS) is poorly resolved in the model. To improve this, eight snow albedo schemes are evaluated here. The resulting SMB is downscaled from the lower resolution global climate model topography to the higher resolution ice sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice sheet model simulations. This results in an optimised albedo parameterization that can be used in future EC-Earth simulations with an interactive ice sheet component.


2017 ◽  
Vol 11 (4) ◽  
pp. 1949-1965 ◽  
Author(s):  
Michiel M. Helsen ◽  
Roderik S. W. van de Wal ◽  
Thomas J. Reerink ◽  
Richard Bintanja ◽  
Marianne S. Madsen ◽  
...  

Abstract. The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB) of the Greenland ice sheet (GrIS) is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.


2012 ◽  
Vol 26 (21) ◽  
pp. 8269-8288 ◽  
Author(s):  
Alvaro Semedo ◽  
Ralf Weisse ◽  
Arno Behrens ◽  
Andreas Sterl ◽  
Lennart Bengtsson ◽  
...  

Abstract Wind-generated waves at the sea surface are of outstanding importance for both their practical relevance in many aspects, such as coastal erosion, protection, or safety of navigation, and for their scientific relevance in modifying fluxes at the air–sea interface. So far, long-term changes in ocean wave climate have been studied mostly from a regional perspective with global dynamical studies emerging only recently. Here a global wave climate study is presented, in which a global wave model [Wave Ocean Model (WAM)] is driven by atmospheric forcing from a global climate model (ECHAM5) for present-day and potential future climate conditions represented by the Intergovernmental Panel for Climate Change (IPCC) A1B emission scenario. It is found that changes in mean and extreme wave climate toward the end of the twenty-first century are small to moderate, with the largest signals being a poleward shift in the annual mean and extreme significant wave heights in the midlatitudes of both hemispheres, more pronounced in the Southern Hemisphere and most likely associated with a corresponding shift in midlatitude storm tracks. These changes are broadly consistent with results from the few studies available so far. The projected changes in the mean wave periods, associated with the changes in the wave climate in the middle to high latitudes, are also shown, revealing a moderate increase in the equatorial eastern side of the ocean basins. This study presents a step forward toward a larger ensemble of global wave climate projections required to better assess robustness and uncertainty of potential future wave climate change.


2008 ◽  
Vol 21 (19) ◽  
pp. 5061-5075 ◽  
Author(s):  
Simone Dietmüller ◽  
Michael Ponater ◽  
Robert Sausen ◽  
Klaus-Peter Hoinka ◽  
Susanne Pechtl

Abstract The direct impact of aircraft condensation trails (contrails) on surface temperature in regions of high aircraft density has been a matter of recent debate in climate research. Based on data analysis for the 3-day aviation grounding period over the United States, following the terrorists’ attack of 11 September 2001, a strong effect of contrails reducing the surface diurnal temperature range (DTR) has been suggested. Simulations with the global climate model ECHAM4 (including a contrail parameterization) and long-term time series of observation-based data are used for an independent cross check with longer data records, which allow statistically more reliable conclusions. The climate model underestimates the overall magnitude of the DTR compared to 40-yr ECMWF Re-Analysis (ERA-40) data and station data, but it captures most features of the DTR global distribution and the correlation between DTR and either cloud amount or cloud forcing. The diurnal cycle of contrail radiative impact is also qualitatively consistent with expectations, both at the surface and at the top of the atmosphere. Nevertheless, there is no DTR response to contrails in a simulation that inhibits a global radiative forcing considerably exceeding the upper limit of contrail radiative impact according to current assessments. Long-term trends of DTR, the level of natural DTR variability, and the specific effect of high clouds on DTR are also analyzed. In both ECHAM4 and ERA-40 data, the correlation of cloud coverage or cloud radiative forcing with the DTR is mainly apparent for low clouds. None of the results herein indicates a significant impact of contrails on reducing the DTR. Hence, it is concluded that the respective hypothesis as derived from the 3-day aviation-free period over the United States lacks the required statistical backing.


2020 ◽  
Vol 12 (24) ◽  
pp. 4089
Author(s):  
Michael V. W. Cuttler ◽  
Kilian Vos ◽  
Paul Branson ◽  
Jeff E. Hansen ◽  
Michael O’Leary ◽  
...  

Coral reef islands are among the most vulnerable landforms to climate change. However, our understanding of their morphodynamics at intermediate (seasonal to interannual) timescales remains poor, limiting our ability to forecast how they will evolve in the future. Here, we applied a semi-automated shoreline detection technique (CoastSat.islands) to 20 years of publicly available satellite imagery to investigate the evolution of a group of reef islands located in the eastern Indian Ocean. At interannual timescales, island changes were characterized by the cyclical re-organization of island shorelines in response to the variability in water levels and wave conditions. Interannual variability in forcing parameters was driven by El Niño Southern Oscillation (ENSO) cycles, causing prolonged changes to water levels and wave conditions that established new equilibrium island morphologies. Our results present a new opportunity to measure intermediate temporal scale changes in island morphology that can complement existing short-term (weekly to seasonal) and long-term (decadal) understanding of reef island evolution.


1978 ◽  
Vol 1 (16) ◽  
pp. 3
Author(s):  
Rodney J. Sobay

Australia's Coral Sea coast from Bundaberg north to Cape York has a wind wave climate that is almost unique. The coastline is afforded unparalleled protection from the 1900 km Great Barrier Reef, yet it lies in a tropical cyclone region and must expect recurrent intense wind and wave conditions. The Great Barrier Reef is a continuous chain of quite separate coral reef clusters located near the edge of the continental shelf. The separate reefs are often exposed at low tide, the inner fringe of the clusters ranges from 10 km offshore north of Cairns to 200 km offshore south of Rockhampton and the outer fringe is typically some 50 km further offshore, beyond which the ocean bed drops rapidly away. Incident wave energy from the Coral Sea is invariably dissipated on the outer edge of the Reef and wave conditions on the continental shelf can reasonably be considered due to local wind conditions. The Reef imposes an effective fetch limitations on wave generation over the continental shelf and there is, as a consequence, a moderately rapid response of wave conditions to changes in local wind conditions. A pronounced diurnal variation in the wind climate is reflected also in the wave climate and the stability of the region's tropical climate leads to frequent calm to slight sea conditions. This stability however is occasionally exploded by the generation and passage of a tropical cyclone in mid to late summer. Large waves can be generated by the intense winds of the tropical cyclone (hurricane or typhoon), often an order of magnitude greater than those in response to non-cyclonic events. The rational design of coastal structures and the rational pursuit of coastal zone management requires appropriate estimates of the frequency of occurrence of waves of various heights. Ideally such information is obtained from an extreme value analysis of long term wave records at the particular site in question. Permanent wave recording programs unfortunately have only become common practice in the present decade and wave records, if they exist at all for a particular site, are rarely long enough to allow a satisfactory extreme value analysis. It is clear, in the Australian context at least, that historical wave data alone is not yet sufficient to derive satisfactory estimates of long term wave frequencies. The alternative is system modelling. Wind is a major meteorological variable and its long term recording has been a standard meteorological practice now for over half a century.


2020 ◽  
Author(s):  
Douglas Morrison ◽  
Ian Crawford ◽  
Nicholas Marsden ◽  
Michael Flynn ◽  
Katie Read ◽  
...  

Abstract. Observations of the long-range transport of biological particles in the tropics via dust vectors are now seen as fundamental to the understanding of many global atmosphere-oceanic biogeochemical cycles, changes in air quality, human health, ecosystem impacts, and climate. However, there is a lack of long-term measurements quantifying their presence in such conditions. Here we present annual observations of bioaerosol concentrations based on online ultraviolet light induced fluorescence (UV-LIF) spectrometry from the global WMO/Global Atmospheric Watch (GAW) observatory on Sao Vicente Cape Verde Atmospheric Observatory. We observe the expected strong seasonal changes in absolute concentrations of bioaerosols with significant enhancements during winter due to the strong island inflow of airmass, originating from the African continent. Monthly median bioaerosol concentrations as high as 45 L−1 were found with 95th percentile values exceeding 130 L−1 during strong dust events. However, in contrast the relative fraction of bioaerosol numbers compared to total dust number concentration shows little seasonal variation. Mean bioaerosol contributions accounted for 0.4 ± 0.2 % of total coarse aerosol concentrations, only rarely exceeding 1 % during particularly strong events under appropriate conditions. Although enhancements in the median bioaerosol fraction do occur in winter, they also occur at other times of the year, likely due to the enhanced Aeolian activity driving dust events at this time from different sources. We hypothesise that this indicates the relative contribution of bioaerosol material in dust transported across the tropical Atlantic throughout the year is relatively uniform, comprised mainly of mixtures of dust and bacteria and/or bacterial fragments. We argue that this hypothesis is supported from analysis of measurements also at Cape Verde just prior to the long-term monitoring experiment where UV-LIF single particle measurements were compared with Laser Ablation Aerosol Particle Time of Flight mass spectrometer (LAAP-ToF) measurements. These clearly show a very high correlation between particles with mixed bio-silicate mass spectral signatures and UV-LIF bio-fluorescent signatures suggesting the bioaerosol concentrations are dominated by these mixtures. These observations should assist with constraining bioaerosol concentrations for tropical Global Climate Model (GCM) simulations. Note here we use the term “bioaerosol” to include mixtures of dust and bacterial material.


Sign in / Sign up

Export Citation Format

Share Document