scholarly journals QTL analysis for stomatal density and size in wheat spike organ

Author(s):  
ShuguangWang, Fanfan Dong ◽  
Daizhen Sun, Yaoyu Chen ◽  
Xue Yan, Ruilian Jing

Plant changes its own photosynthetic rate and transpiration rate through regulating stomatal aperture, stomatal density and stomatal distribution. In this study, stomatal density, length and width of wheat spike organs, including palea, lemma and glume, at the third day after flowering were investigated, using a wheat doubled haploid population from a cross of Hanxuan10 and Lumai 14 in 2012 and 2013. And quantitative trait loci (QTL) of the above three traits were analyzed. There were stomata in the abaxial surface of palea, lemma and glume, but not in the adaxial surface for DH lines and their parents. A total of fourteen additive QTLs for those traits were identified. On the marker interval Xgwm291-Xgwm410-WMC340 on chromosome 5A, QMLsd-5A for stomatal density at middle of lemma and QDGsd-5A for stomatal density at down of glume, and QAGsl-5A for stomatal length at apex of glume were detected in 2012 and 2013,but with opposite direction of additive effect. In the previous study, Qsd-5A.3 and Qsd-5A.4 for stomatal density of wheat leaf, and Qsl-5A.1 for stomatal length of wheat leaf were also detected at the same marker region, and also with opposite direction of additive effect. These findings provided genetic basis for significantly negative correlation between stomatal density and length for wheat leaf and spike organs, but also implied stomatal density and length for wheat leaf and spike organs may be governed by the same or pleiotropic genes.

Genome ◽  
1998 ◽  
Vol 41 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Lishuang Shen ◽  
Lihuang Zhu

Direct PCR-based genetic mapping of telomeric repeat associated sequences (TASs) was achieved using a RAPD primer mediated asymmetric PCR method. Twenty-two TAS loci were mapped in a rice doubled haploid population derived from a cross between an indica variety (Zhaiyeqing8) and a japonica variety (Jingxi17). Of these, 11 loci were mapped to the most distal position of seven chromosome arms and lengthened the linkage groups by 7.4-22.6 cM, five were mapped to the approximate positions of the centromeric regions, and six were mapped to other interstitial chromosomal regions.Key words: rice, Oryza sativa L., genetic mapping, telomeric repeat, telomeric repeat associated sequences, RAPD primer mediated PCR.


2018 ◽  
Vol 97 (5) ◽  
pp. 1389-1406 ◽  
Author(s):  
Farshad Fattahi ◽  
Barat Ali Fakheri ◽  
Mahmood Solouki ◽  
Christian Möllers ◽  
Abbas Rezaizad

AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Wanli Zhao ◽  
Peili Fu ◽  
Guolan Liu ◽  
Ping Zhao

Abstract Emergent aquatic plants mostly occur in shallow waters and root in bottom substrates, but their leaves emerge from the water surface and are thus exposed to air, similar to the leaves of terrestrial plants. Previous studies have found coordination between leaf water supply and demand in terrestrial plants; however, whether such a coordination exists in emergent aquatic plants remains unknown. In this study, we analysed leaf veins and stomatal characteristics of 14 emergent aquatic and 13 terrestrial monocotyledonous herb species (EMH and TMH), with 5 EMH and 8 TMH belonging to Poaceae. We found that EMH had significantly higher mean leaf area, leaf thickness, stomatal density, stomatal number per vein length and major vein diameter, but lower mean major vein length per area (VLA) and total VLA than TMH. There was no significant difference in stomatal length, minor VLA and minor vein diameter between the two groups. Stomatal density and total VLA were positively correlated among the EMH, TMH, as well as the 8 Poaceae TMH species, but this correlation became non-significant when data from both the groups were pooled. Our results showed that the differences in water supply between emergent aquatic and terrestrial plants modify the coordination of their leaf veins and stomatal traits.


2003 ◽  
Vol 54 (12) ◽  
pp. 1125 ◽  
Author(s):  
A. R. Barr ◽  
A. Karakousis ◽  
R. C. M. Lance ◽  
S. J. Logue ◽  
S. Manning ◽  
...  

A doubled haploid population of 120 individuals was produced from the parents Chebec, an Australian 2-row barley of feed quality with resistance to the cereal cyst nematode, and Harrington, a 2-rowed, Canadian variety of premium malting quality. This paper describes 18 field and laboratory experiments conducted with the population and summarises the traits mapped and analysed. The genomic location of 25 traits and genes is described and marker–trait associations for 5 traits (malt extract, diastatic power, resistance to cereal cyst nematode, early flowering, resistance to pre-harvest sprouting) important to Australian efforts to improve malting barley varieties have been used in practical breeding programs. Detailed maps for these populations are shown in this paper, while a consensus map incorporating these maps and further experiments on the populations are described elsewhere in this issue.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 836
Author(s):  
Yanyan Jiao ◽  
Jinlong Li ◽  
Wei Li ◽  
Ming Chen ◽  
Mengran Li ◽  
...  

Chromosome doubling of maize haploids is a bottleneck in the large-scale application of doubled haploid (DH) technology. Spontaneous chromosome doubling (SCD) of haploid has been taken as an important method in the production of DH lines and low haploid male fertility (HMF) is a main limiting factor for the use of SCD. To study its genetic basis, haploids of 119 DH lines derived from a cross between inbred lines Qi319 and Chang7-2 were used to map the quantitative trait locus (QTL) contributing to HMF. Three traits including anther emergence rate (AER), anther emergence score (AES) and pollen production score (PPS) of the haploid population were evaluated at two locations. The heritability of the three traits ranged from 0.70 to 0.81. The QTL contributing to AER, AES and PPS were identified on the chromosomes 1, 2, 3, 4, 5, 7, 9 and 10. Five major QTL, qAER5-1, qAER5-2, qAES3, qPPS1 and qPPS5, were found and each could explain more than 15% of the phenotypic variance at least in one environment. Two major QTL, qPPS1 and qPPS5, and two minor QTL, qAES2 and qAER3, were repeatedly detected at both locations. To increase the application efficiency of HMF in breeding programs, genomic prediction for the three traits were carried out with ridge regression best linear unbiased prediction (rrBLUP) and rrBLUP adding QTL effects (rrBLUP-QTL). The prediction accuracies of rrBLUP-QTL were significantly higher than that by rrBLUP for three traits (p < 0.001), which indirectly indicates these QTL were effective. The prediction accuracies for PPS were 0.604 (rrBLUP) and 0.703 (rrBLUP-QTL) across both locations, which were higher than that of AER and AES. Overall, this study provides important information to understand the genetic architecture of SCD of maize haploids.


2020 ◽  
Vol 21 (11) ◽  
pp. 3960 ◽  
Author(s):  
Tao Liu ◽  
Lijun Wu ◽  
Xiaolong Gan ◽  
Wenjie Chen ◽  
Baolong Liu ◽  
...  

Thousand-grain weight (TGW) is a very important yield trait of crops. In the present study, we performed quantitative trait locus (QTL) analysis of TGW in a doubled haploid population obtained from a cross between the bread wheat cultivar “Superb” and the breeding line “M321” using the wheat 55-k single-nucleotide polymorphism (SNP) genotyping assay. A genetic map containing 15,001 SNP markers spanning 2209.64 cM was constructed, and 9 QTLs were mapped to chromosomes 1A, 2D, 4B, 4D, 5A, 5D, 6A, and 6D based on analyses conducted in six experimental environments during 2015–2017. The effects of the QTLs qTgw.nwipb-4DS and qTgw.nwipb-6AL were shown to be strong and stable in different environments, explaining 15.31–32.43% and 21.34–29.46% of the observed phenotypic variance, and they were mapped within genetic distances of 2.609 cM and 5.256 cM, respectively. These novel QTLs may be used in marker-assisted selection in wheat high-yield breeding.


Sign in / Sign up

Export Citation Format

Share Document