scholarly journals Generation of Time Series Data from Octave Bandwidth SPL of Acoustic Loading Using Interpolation Method

Author(s):  
Eun-Su Go ◽  
In-Gul Kim ◽  
Minhyeok Jeon ◽  
Hyun-Jun Cho ◽  
Jae-Sang Park ◽  
...  
2018 ◽  
Vol 7 (3.7) ◽  
pp. 51
Author(s):  
Maria Elena Nor ◽  
Norsoraya Azurin Wahir ◽  
G P. Khuneswari ◽  
Mohd Saifullah Rusiman

The presence of outliers is an example of aberrant data that can have huge negative influence on statistical method under the assumption of normality and it affects the estimation. This paper introduces an alternative method as outlier treatment in time series which is interpolation. It compares two interpolation methods using performance indicator. Assuming outlier as a missing value in the data allows the application of the interpolation method to interpolate the missing value, thus comparing the result using the forecast accuracy. The monthly time series data from January 1998 until December 2015 of Malaysia Tourist Arrivals were used to deal with outliers. The results found that the cubic spline interpolation method gave the best result than the linear interpolation and the improved time series data indicated better performance in forecasting rather than the original time series data of Box-Jenkins model. 


Information ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 341
Author(s):  
Hyuk-Rok Kwon ◽  
Pan-Koo Kim

With the expansion of advanced metering infrastructure (AMI) installations, various additional services using AMI data have emerged. However, some data is lost in the communication process of data collection. Hence, to address this challenge, the estimation of the missing data is required. To estimate the missing values in the time-series data generated from smart meters, we investigated four methods, ranging from a conventional method to an estimation method applying long short-term memory (LSTM), which exhibits excellent performance in the time-series field, and provided the performance comparison data. Furthermore, because power usages represent estimates of data that are missing some values in the middle, rather than regular time-series estimation data, the simple estimation may lead to an error where the estimated accumulated power usage in the missing data is larger than the real accumulated power usage appearing in the data after the end of the missing data interval. Therefore, this study proposes a hybrid method that combines the advantages of the linear interpolation method and the LSTM estimation-based compensation method, rather than those of conventional methods adopted in the time-series field. The performance of the proposed method is more stable and better than that of other methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255857
Author(s):  
Shuqi Ma ◽  
Qianyi Liu ◽  
Yudong Zhang

In the current study, based on the national fire statistics from 2003 to 2017, we analyzed the 24-hour occurrence regularity of fire in China to study the occurrence regularity and influencing factors of fire and provide a reference for scientific and effective fire prevention. The results show that the frequency of fire is low from 0 to 6 at night, accounting for about 13.48%, but the death toll due to fire is relatively high, accounting for about 39.90%. Considering the strong seasonal characteristics of the time series of monthly fire frequency, the SARIMA model predicts the fire frequency. According to the characteristics of time series data and prediction results, an optimized Seasonal Autoregressive Integrated Moving Average Model (SARIMA) model based on Quantile outlier detection method and similar mean interpolation method is proposed, and finally, the optimal model is constructed as SARIMA (1,1,1) (1,1,1) 12 for prediction. The results show that: according to the optimized SARIMA model to predict the number of fires in 2018 and 2019, the root mean square error of the fitting results is 2826.93, which is less than that of the SARIMA model, indicating that the improved SARIMA model has a better fitting effect. The accuracy of the results is increased by 11.5%. These findings verified that the optimized SARIMA model is an effective improvement for the series with quantile outliers, and it is more suitable for the data prediction with seasonal characteristics. The research results can better mine the law of fire aggregation and provide theoretical support for fire prevention and control work of the fire department.


2021 ◽  
Vol 5 (1) ◽  
pp. 57
Author(s):  
Sophie Castel ◽  
Wesley S. Burr

Real-world time series data often contain missing values due to human error, irregular sampling, or unforeseen equipment failure. The ability of a computational interpolation method to repair such data greatly depends on the characteristics of the time series itself, such as the number of periodic and polynomial trends and noise structure, as well as the particular configuration of the missing values themselves. The interpTools package presents a systematic framework for analyzing the statistical performance of a time series interpolator in light of such data features. Its utility and features are demonstrated through evaluation of a novel algorithm, the Hybrid Wiener Interpolator.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

2020 ◽  
Vol 17 (3) ◽  
pp. 1
Author(s):  
Angkana Pumpuang ◽  
Anuphao Aobpaet

The land deformation in line of sight (LOS) direction can be measured using time series InSAR. InSAR can successfully measure land subsidence based on LOS in many big cities, including the eastern and western regions of Bangkok which is separated by Chao Phraya River. There are differences in prosperity between both sides due to human activities, land use, and land cover. This study focuses on the land subsidence difference between the western and eastern regions of Bangkok and the most possible cause affecting the land subsidence rates. The Radarsat-2 single look complex (SLC) was used to set up the time series data for long term monitoring. To generate interferograms, StaMPS for Time Series InSAR processing was applied by using the PSI algorithm in DORIS software. It was found that the subsidence was more to the eastern regions of Bangkok where the vertical displacements were +0.461 millimetres and -0.919 millimetres on the western and the eastern side respectively. The districts of Nong Chok, Lat Krabang, and Khlong Samwa have the most extensive farming area in eastern Bangkok. Besides, there were also three major industrial estates located in eastern Bangkok like Lat Krabang, Anya Thani and Bang Chan Industrial Estate. By the assumption of water demand, there were forty-eight wells and three wells found in the eastern and western part respectively. The number of groundwater wells shows that eastern Bangkok has the demand for water over the west, and the pumping of groundwater is a significant factor that causes land subsidence in the area.Keywords: Subsidence, InSAR, Radarsat-2, Bangkok


Sign in / Sign up

Export Citation Format

Share Document