scholarly journals The Characteristics of Purun Tikus Particle Board Cement Board

2017 ◽  
Vol 10 (01) ◽  
pp. 01-04
Author(s):  
Henry Wardhana ◽  
Ninis Hadi Haryanti
Keyword(s):  
2017 ◽  
Vol 1 (3) ◽  
pp. 203
Author(s):  
Rohny S. Maail

This research objectives were to investigate possibility of using the waste of sago cortex (Ela sagu/Wa’a) in the manufacture of cement board and to determine the physical properties of cement board based on the comparison in proportion of materials (cement, sago, water)  and catalyst calcium chloride (CaCl2). Method were applied used completely randomesed design with tree replications in 3x3x3, with total 27 samples of cement board. The results shown that the waste of sago cortex ca be applied as raw materials to manufacture of cement board and fulfill the standard of particle board (JIS A 5908, 2003). The board have dencity which is almost equal to the target of dencity, lower value in water content, water absorption and thichness swelling so that have good performance in quality and stability dimensions. The sago cortex in side of base and the catalyst CaCl2 in 6% gave high performance for all physical properties of cement board.


2017 ◽  
Vol 10 (01) ◽  
pp. 01-04 ◽  
Author(s):  
Henry Wardhana ◽  
Ninis Hadi Haryanti
Keyword(s):  

2012 ◽  
Vol 3 (1) ◽  
pp. 20-21
Author(s):  
A.Sangeetha A.Sangeetha ◽  
◽  
K.Thanigai K.Thanigai ◽  
Narasimhamurthy Narasimhamurthy ◽  
S.K.Nath S.K.Nath

2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.


2021 ◽  
Vol 55 (2) ◽  
pp. 331-349
Author(s):  
Hannes Orelma ◽  
Atsushi Tanaka ◽  
Maija Vuoriluoto ◽  
Alexey Khakalo ◽  
Antti Korpela

AbstractTraditional particle board can generate harmful indoor air emissions due to the volatile resin-based compounds present. This study investigated the preparation of sawdust particle board using the novel ionic liquid based fusion approach with [EMIM]OAc. The dissolution parameters were investigated using the thermal optical microscopy technique. The particle board sheets were prepared by hot pressing sawdust in the presence of ionic liquid (IL) ([EMIM]OAc) and subsequently purifying the fusion sawdust matrix from the IL with methanol. The fusion process of the sawdust particles was analysed with SEM and mechanical testing. The raw materials and the produced materials were investigated with elemental analysis, FTIR, and 13C-SS-NMR. IL fusion of the sawdust required a temperature above 150 °C, similar to the glass transition temperature (tg) of lignin. At lower temperatures, strong particle fusion was not obtained. It was observed that the sawdust/IL weight ratio was an important parameter of the fusion process, and a 1:3 weight ratio resulted in the strongest particle boards with a tensile strength of up to 10 MPa, similar to commercial particle boards. The particle fusion process was also studied with a twin-screw extruder. The extrusion enhanced the fusion of the sawdust particles by increasing dissolution of the sawdust particles, which was subsequently seen in elevated tensile strength (20 MPa). The study provides a practical view of how sawdust-based particle board can be manufactured using ionic liquid-based fusion.


2000 ◽  
Vol 71 (1) ◽  
pp. 93-94 ◽  
Author(s):  
R Viswanathan ◽  
L Gothandapani ◽  
R Kailappan

Sign in / Sign up

Export Citation Format

Share Document