scholarly journals Evaluation of the effect of lateral soil pressure on cantilever retaining wall with soil type variation

2014 ◽  
Vol 11 (2) ◽  
pp. 36-42 ◽  
Author(s):  
Chetan Sharma ◽  
◽  
Vijay Baradiya
2012 ◽  
Vol 204-208 ◽  
pp. 718-721 ◽  
Author(s):  
Peng Li ◽  
Xiao Song

The traditional formula using for the calculation of Expressway on high embankment of the retaining wall and the earth pressure can not be very good practical. In order to accurately determine the soil pressure calculation of the complex retaining wall in construction stage for guaranteeing the engineering safety, the experiment study on soil pressure is done, and the study on soil pressure monitoring data is also done. Then the valuable conclusions are obtained to facilitate better practical guidance for construction.


2014 ◽  
Vol 672-674 ◽  
pp. 1863-1867
Author(s):  
Jian Qing Wu ◽  
Ying Yong Li ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Qing Yu Meng ◽  
...  

In order to study anchor relaxation of pressure dispersive retaining wall, the numerical simulation model was designed to simulate the retaining wall with single anchor plate. The results showed that the pressure dispersive retaining wall had good overall stability. Anchor Relaxtion had two sudden changes. As a result, the lateral soil pressure near the anchor had been released and the displacement Significantly increased.


2011 ◽  
Vol 243-249 ◽  
pp. 2266-2270
Author(s):  
Guang Zhu Zhou ◽  
Xu Wei ◽  
Chen Yu

As a new type of building envelope, Gcrw is mainly used for excavation of foundation pit. It can stand by itself without the help of bracing, especially in soft soil area. Its stressed characteristic hasn’t been known yet. By using advanced big finite element software Abaqus/Cae, a simulation was made on model of Gcrw under soil pressure when a foundation pit is dug, while the whole excavation is divided into three continuous independent excavation stages. The result shows that Gcrw is a rather good building envelope, Gcrw and soil in the gridding form an integral earth-retaining structure and keep balance under soil pressure before or behind the structure, and have little displacement in horizontal direction. It is like a gravity-type retaining wall in its entirety, but takes on an elastic characteristic. The soil pressure presents a linear change, but its value is less than the theoretical value of calculation. The front wall of Gcrw, like a sheet, is the main flexural construction element, which is subjected to the pressure from side wall of foundation pit and produce curve deformation. The back wall of Gcrw has little displacement and almost is built in the clay. The partition wall endures the effect of the tensile force, its horizontal deformation increases with the build-in depth’s increasing. The back wall and the partition wall play a very important role in dragging back the front wall, the role of them is similar to a pair of anchor tie. The soil in the gridding not only provides soil pressure, but also can fix the back wall, so it is seen as a part of Gcrw and in favor of the Gcrw’s anti-overturn.


2011 ◽  
Vol 378-379 ◽  
pp. 256-261
Author(s):  
Yi Min Wang ◽  
Huan Li ◽  
Hui Zhang

Numerical simulation for dynamic response of EPS geofoam seismic buffers placed behind the rigid retaining walls was carried out with the Fast Lagrangian Analysis for Continuum method (FLAC) .The considerations of setting boundary condition of the numerical model, inputting and correcting the dynamic time series of seismic acceleration, and selecting the proper damping were discussed. The coincidence relations of compression-time for EPS geofoam buffers and the horizontal soil pressure -time for retaining wall were numerically calculated by using the proposed model. The calculating results were compared with the physical testing results. The comparisons showed that there were good agreements between the numerical data and the measured data. The numerical results indicate that EPS panels placed between the rigid retaining wall and the backfill soil have a good effect on reducing horizontal earth force during shaking acceleration and can act as seismic buffers against earthquake. The FLAC model provides a feasible way to analyze the dynamic response of EPS geofoam seismic buffers for further researches.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Guodong Liu ◽  
Zhijun Zhou ◽  
Shiqiang Xu ◽  
Wenjing Mi

Failures of treated slope occurring in China are at a continually increasing rate, and the huge number of treated loess slopes is calling for a postevaluation; however, no mature technique is in place. Based on an actual loess slope in Shaanxi Province treated by retaining wall, indoor geotechnical and model tests were conducted, revealing the rainwater infiltration process and pressure variations behind the wall, and the processes were then adopted to perform the postevaluation of the treated slope. The results proposed that effectual measures hence needed to be taken so as to avert rainwater infiltrating along the wall face and back or flowing through the wall body, which can soften the soil of the slope bottom. Although the wet front was developed by the rainfall process, it cannot be used as the boundary between saturated and unsaturated areas. Despite the peculiarly large soil pressure upon the wall back at the top layer, the soil pressure increases to a large value and then decreases with the depth. The model test results and investigation results were used to conduct the postevaluation of the prototype slope, which formed a postevaluation frame relevant to other slope postevaluations.


2021 ◽  
Vol 11 (19) ◽  
pp. 8988
Author(s):  
Zhijun Xu ◽  
Hanhua Yu

The buoyancy of underwater can cause the underground granary to overall float, or even overturn, and the interaction between the soil and underground granary is the key to its stability. This paper introduces a non-contact experiment system utilizing the digital image correlation (DIC) technology and particle image velocity (PIV) technology, and its measurement accuracy is analyzed. Then, this system is employed to study the granary displacement and the soil deformation around the granary subjected to the buoyancy of water. Results show that with the increase of the degree of compaction of the soil around the granary, the floating water level increases by 10.77% and the vertical displacement decreases by 17%. When the soils around the granary are loose sands, the soil deformation range shows an obvious inverted triangle. When the soils are medium dense sands, the soil deformation zone concentrates at the junction of the conical granary bottom and granary wall. When the soils are dense sands, the disturbed range of the soil obviously reduces, and the soil deformation concentrates on both sides of the granary wall and is distributed symmetrically. Finally, taking the medium dense sands around the granary as an example, the reasons for the unstable failure of the granary subjected to buoyancy are discussed, assisted by the soil pressure theory of retaining wall. With the granary increasingly inclining, the soil deviating from the inclined direction of the granary loses its support, which drives the soils to reach the active limit state. The soil in the inclined direction of the granary is squeezed, resulting in passive soil pressure on the granary wall. The soil deformation increases continuously to a passive limit equilibrium state, and the soil continuously develops a sliding surface, resulting in the unstable failure of the granary. This research is expected to provide the technical guidance for the design and popularization of underground granaries.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sahar Ghobadi ◽  
Hadi Shahir

Purpose The purpose of this paper is to study the distribution of active earth pressure in retaining walls with narrow cohesion less backfill considering arching effects. Design/methodology/approach To this end, the approach of principal stresses rotation was used to consider the arching effects. Findings According to the presented formulation, the active soil pressure distribution is nonlinear with zero value at the wall base. The proposed formulation implies that by increasing the frictional forces at both sides of the backfill, the arching effect is increased and so, the lateral earth pressure on the retaining wall is decreased. Also, by narrowing the backfill space, the lateral earth pressure is extremely decreased. Originality/value A comprehensive analytical solution for the active earth pressure of narrow backfills is presented, such that the effects of the surcharge and the characteristics of the stable back surface are considered. The magnitude and height of the application of lateral active force are also derived.


2019 ◽  
Vol 14 (9) ◽  
pp. 1154-1169
Author(s):  
Hiroshi Nakazawa ◽  
Kazuya Usukura ◽  
Tadashi Hara ◽  
Daisuke Suetsugu ◽  
Kentaro Kuribayashi ◽  
...  

The earthquake (Mw 7.3) that struck Nepal on April 25, 2015 caused damage to many civil engineering and architectural structures. While several road gabion retaining walls in mountainous regions incurred damage, there was very little information that could be used to draw up earthquake countermeasures in Nepal, because there have been few construction cases or case studies of gabion structures, nor have there been experimental or analytical studies on their earthquake resistance. Therefore, we conducted a shake table test using a full-scale gabion retaining wall to evaluate earthquake resistance. From the experiments, it was found that although gabion retaining walls display a flexible structure and deform easily due to the soil pressure of the backfill, they are resilient structures that tend to resist collapse. Yet, because retaining walls are assumed to be rigid bodies in the conventional stability computations used to design them, the characteristics of gabions as flexible structures are not taken advantage of. In this study, we propose an approach to designing gabion retaining walls by comparing the active collapse surface estimated by the trial wedge method, and the experiment results obtained from a full-scale model of a vertically-stacked wall, which is a structure employed in Nepal that is vulnerable to earthquake damage. When the base of the estimated slip line was raised for the trial wedge method, its height was found to be in rough agreement with the depth at which the gabion retaining wall deformed drastically in the experiment. Thus, we were able to demonstrate the development of a method for evaluating the seismic stability of gabion retaining walls that takes into consideration their flexibility by adjusting the base of the trial soil wedge.


Sign in / Sign up

Export Citation Format

Share Document