scholarly journals Protease Production from Immobilized Bacillus Subtilis and Its Application

2017 ◽  
Vol 12 (04) ◽  
pp. 34-37
Author(s):  
Dr.K. Jagathy
1988 ◽  
Vol 28 (4-5) ◽  
pp. 404-408 ◽  
Author(s):  
Manoj M. Kole ◽  
Indira Draper ◽  
Donald F. Gerson

Author(s):  
Cheong, J.Y. ◽  
Mustafa, M. ◽  
Abd. Aziz, N.A. ◽  
Go, R. ◽  
Ahmad Adli, A.

2021 ◽  
Vol 16 (7) ◽  
pp. 84-91
Author(s):  
Maslinda Alias ◽  
Hakim Che Harun Mohammad ◽  
Ashraf Razali Nurul ◽  
Jasnizat Saidin ◽  
Nazaitulshila Rasit ◽  
...  

This research aims to produce thermostable alkaline protease from Bacillus subtilis isolated from La Hot Spring, Terengganu, Malaysia. The study was also conducted to determine the optimum conditions for protease production and stability by considering several parameters including pH, temperature and salt concentration. All seven bacteria were screened on skim milk agar overnight at 37 °C. Three strains with the highest proteolytic activity were identified in protease specific medium. The thermostable alkaline protease had an optimum temperature of 60 °C which achieved 85.73, 82.90 and 83.05 U/mL of protease activity for the three strains respectively. Furthermore, the strains exhibited significant activity of more than 90% from their original activity. Meanwhile, the optimum pH for protease production was pH 9 with the protease activity of 76.76, 79.71 and 88.39 U/mL for TB4, TB6 and TB9 strains, respectively. Proteases were found stable at pH 9 where the loss did not exceed 30% of its original activity. Collectively, all of the data emphasised that proteases from B. subtilis were alkaline thermostable proteases in accordance with a recent report. The finding highlights the viability of the proteases for biotechnological and industrial applications.


2011 ◽  
Vol 17 (2) ◽  
pp. 215-222 ◽  
Author(s):  
P. Rathakrishnan ◽  
P. Nagarajan ◽  
Rajesh Kannan

Optimization of the growth condition for maximum growth rate and protease production was carried out using Bacillus subtilis. The optimization of protease production using agro industrial waste product such as cassava waste as substrate was performed with statistical methodology based on experimental designs. The screening of twelve nutrients for their influence on protease production was achieved using a Plackett-Burman design. MgSO4.7H2O, casein and glucose were selected based on their positive influence on protease production. The selected components were optimized using Response Surface Methodology (RSM). The optimum conditions are (% w/w): MgsO4.7H2O- 0.14, casein- 1.4 and glucose- 2.64. These conditions were validated experimentally which revealed an enhanced protease yield of 202.048 U/gds.


2017 ◽  
Vol 147 (5) ◽  
pp. 1204-1213 ◽  
Author(s):  
Fouzia Hussain ◽  
Shagufta Kamal ◽  
Saima Rehman ◽  
Muhammad Azeem ◽  
Ismat Bibi ◽  
...  

2006 ◽  
Vol 72 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Kazuhiko Kurosawa ◽  
Takeshi Hosaka ◽  
Norimasa Tamehiro ◽  
Takashi Inaoka ◽  
Kozo Ochi

ABSTRACT The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances α-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing α-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in α-amylase production seen in the affected strain.


2014 ◽  
Vol 63 (3-4) ◽  
pp. 303-307 ◽  
Author(s):  
M. H. Abd-Alla ◽  
S. A. Omar ◽  
M. A. El-Nagdy

The investigation was designed to isolate and identify the proteolytic microorganisms inhabiting salted fish. <i>Bacillus subtilis</i> was chosen as the most promising protease producer. Some properties of the crude protease are presented, the effect of metal ions on protease production has been studied. It was shown that Ca<sup>2+</sup> and Mg<sup>2+</sup> stimulated, while Co<sup>2+</sup> , Zn<sup>2+</sup> and Cu<sup>2+</sup> inhibited the enzyme production. The effect of temperature and pH and salt tolerance have also been studied. Protease activity was stable in 25% NaCl. The favourable characteristics of the enzyme might have extensive application in laundry detergents and in tanning industry.


2016 ◽  
Vol 4 (3) ◽  
pp. 397-401
Author(s):  
M.D. BalaKumaran ◽  
R. Santhi

In the present study, chicken feather powder was screened for its application as the substrate for the production of keratinolytic protease by Bacillus subtilis strain PS03. Bacillus subtilis produced a high level of keratinolytic protease using chicken feather powder as substrate. With feather powder as substrate, physical factors such as incubation time, pH and temperature were optimized for increased keratinolytic protease production by Bacillus subtilis. The enzyme production was enhanced when using maltose as carbon source and yeast extract as nitrogen sources. SDS-PAGE analysis indicated the molecular weight of 46 kDa of the partially purified keratinolytic protease. The keratinolytic protease enzyme was stable over a pH range of 6 – 9 and temperature range of 35 - 50°C with maximum activity at pH 9 and 40°C. Based on the results, the use of feather powder as substrate for keratinolytic protease production is cost effective and is easy to scale up. Considering the availability and cost, chicken feather powder is considered as an ideal substrate for keratinolytic protease production in an industrial point of view. Int J Appl Sci Biotechnol, Vol 4(3): 397-401


Author(s):  
SELMIHAN SAHIN ◽  
YASEMİN DEMIR ◽  
ISMAIL OZMEN

Objective: In the present work, protease was produced from Bacillus subtilis under solid-state fermentation (SSF). The effect of lyophilization with different additives on the activity of protease in an organic solvent and kineteci properties was investigated. Methods: Production conditions of protease (fermentation time, moisture level, initial pH, temperature) were optimized. After production, it was partially purified and then, lyophilized with different additives from an aqueous buffer solution containing 98% (w/w) of different additives (pumice, KCl, without additive) for 72 h after freezing in liquid nitrogen. After that, the effect of organic solvents (2.5% and 5% of DCM, ethanol, hexane, toluene) on these lyophilized protease preparations was determined and their kinetic properties were determined. Results: Optimum protease production was obtained with 40% of moisture level, at pH 7.5, 37 °C after 24 h fermentation. It was partially purified by using ammonium sulphate precipitation (20-80%) with 5.8-fold and specific activity of 38 U/mg and then dialysed with 6.4-fold and a specific activity of 35 U/mg. Co-lyophilization of protease with pumice and KCl was increased activity of an enzyme in aqueous organic solvents when compared lyophilized protease without additive. Used solvents, except DCM, were increased activity of lyophilized protease with pumice/KCl. It was found that the lyophilization with pumice and KCl resulted in an increasing in the catalytic efficiency, while it was decreased in Km and Vmax values. Conclusion: The obtained findings demonstrated that protease from B. subtilis can effectively be produced under SSF by using wheat bran and used in industrial applications because of showing improved activity in an organic solvent by co-lyophilization with pumice/KCl.


Sign in / Sign up

Export Citation Format

Share Document