scholarly journals Protease-producing microorganisms inhabiting salted fish (Moloha) with special reference to protease activity of Bacillus subtilis

2014 ◽  
Vol 63 (3-4) ◽  
pp. 303-307 ◽  
Author(s):  
M. H. Abd-Alla ◽  
S. A. Omar ◽  
M. A. El-Nagdy

The investigation was designed to isolate and identify the proteolytic microorganisms inhabiting salted fish. <i>Bacillus subtilis</i> was chosen as the most promising protease producer. Some properties of the crude protease are presented, the effect of metal ions on protease production has been studied. It was shown that Ca<sup>2+</sup> and Mg<sup>2+</sup> stimulated, while Co<sup>2+</sup> , Zn<sup>2+</sup> and Cu<sup>2+</sup> inhibited the enzyme production. The effect of temperature and pH and salt tolerance have also been studied. Protease activity was stable in 25% NaCl. The favourable characteristics of the enzyme might have extensive application in laundry detergents and in tanning industry.

2021 ◽  
Vol 16 (7) ◽  
pp. 84-91
Author(s):  
Maslinda Alias ◽  
Hakim Che Harun Mohammad ◽  
Ashraf Razali Nurul ◽  
Jasnizat Saidin ◽  
Nazaitulshila Rasit ◽  
...  

This research aims to produce thermostable alkaline protease from Bacillus subtilis isolated from La Hot Spring, Terengganu, Malaysia. The study was also conducted to determine the optimum conditions for protease production and stability by considering several parameters including pH, temperature and salt concentration. All seven bacteria were screened on skim milk agar overnight at 37 °C. Three strains with the highest proteolytic activity were identified in protease specific medium. The thermostable alkaline protease had an optimum temperature of 60 °C which achieved 85.73, 82.90 and 83.05 U/mL of protease activity for the three strains respectively. Furthermore, the strains exhibited significant activity of more than 90% from their original activity. Meanwhile, the optimum pH for protease production was pH 9 with the protease activity of 76.76, 79.71 and 88.39 U/mL for TB4, TB6 and TB9 strains, respectively. Proteases were found stable at pH 9 where the loss did not exceed 30% of its original activity. Collectively, all of the data emphasised that proteases from B. subtilis were alkaline thermostable proteases in accordance with a recent report. The finding highlights the viability of the proteases for biotechnological and industrial applications.


1989 ◽  
Vol 52 (6) ◽  
pp. 399-403 ◽  
Author(s):  
JOHN THOROSKI ◽  
GREG BLANK ◽  
COSTAS BILIADERIS

Eugenol, the major essential oil of clove, in sublethal concentrations (0.02–0.03%, v/v) inhibited the production of alpha-amylase, protease, and subtilisin by Bacillus subtilis in laboratory media. Microscopic observations revealed that at these eugenol concentrations, B. subtilis cells appeared swollen and distorted and/or appeared as very long and thin filaments (&gt; 100 μm). Of 20 amino acids investigated, only L-glutamic or L-aspartic acid (&gt;5.0 mg/ml) prevented such morphogenic distortions when added to eugenol-containing media before inoculation. Addition of these amino acids also resulted in an increase in biomass and protease production. In contrast, the addition of serine (&gt; 1.0 mg/ml) enhanced filamentous growth but reduced the production of protease and subtilisin.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256562
Author(s):  
Nagina Rafique ◽  
Saiqa Bashir ◽  
Muhammad Zubair Khan ◽  
Imran Hayat ◽  
Willium Orts ◽  
...  

Pectinolytic enzymes or pectinases are synthesized naturally by numerous microbes and plants. These enzymes degrade various kinds of pectin which exist as the major component of the cell wall in plants. A pectinase gene encoding endo-polygalacturonase (endo-PGase) enzyme was isolated from Pectobacterium carotovorum a plant pathogenic strain of bacteria and successfully cloned into a secretion vector pHT43 having σA-dependent promoter for heterologous expression in Bacillus subtilis (WB800N).The desired PCR product was 1209bp which encoded an open reading frame of 402 amino acids. Recombinant proteins showed an estimated molecular weight of 48 kDa confirmed by sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. Transformed B. subtilis competent cells harbouring the engineered pHT43 vector with the foreign endo-PGase gene were cultured in 2X-yeast extract tryptone medium and subsequently screened for enzyme activity at various temperatures and pH ranges. Optimal activity of recombinant endo-PGase was found at 40°C and pH 5.0. To assay the catalytic effect of metal ions, the recombinant enzyme was incubated with 1 mM concentration of various metal ions. Potassium chloride increased the enzyme activity while EDTA, Zn++ and Ca++, strongly inhibited the activity. The chromatographic analysis of enzymatic hydrolysates of polygalacturonic acid (PGA) and pectin substrates using HPLC and TLC revealed tri and tetra-galacturonates as the end products of recombinant endo-PGase hydrolysis. Conclusively, endo-PGase gene from the plant pathogenic strain was successfully expressed in Bacillus subtilis for the first time using pHT43 expression vector and could be assessed for enzyme production using a very simple medium with IPTG induction. These findings proposed that the Bacillus expression system might be safer to escape endotoxins for commercial enzyme production as compared to yeast and fungi. Additionally, the hydrolysis products generated by the recombinant endo-PGase activity offer their useful applications in food and beverage industry for quality products.


1988 ◽  
Vol 28 (4-5) ◽  
pp. 404-408 ◽  
Author(s):  
Manoj M. Kole ◽  
Indira Draper ◽  
Donald F. Gerson

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


Author(s):  
Meichun Chen ◽  
Meixia Zheng ◽  
Yanping Chen ◽  
Rongfeng Xiao ◽  
Xuefang Zheng ◽  
...  

2021 ◽  
Vol 66 (1) ◽  
pp. 72-79
Author(s):  
Thuoc Doan Van ◽  
Hung Nguyen Phuc

The effect of physical parameters such as temperature and pH on the production, activity, and stability of α-amylase from Bacillus subtilis V37 was investigated. The results indicated that the optimum culture conditions for enzyme activity were pH 7.0 and 35 oC. The optimum pH and temperature for enzyme activity were 6.0 and 70 oC. The crude enzyme was found to be stable in the pH range of 5.0 to 7.0. The enzyme was stable for 1 h at a temperature from 30 to 80 oC; nearly 100% of enzyme activity remained at temperatures of 30 - 40 oC, and about 34% of original activity remained at a temperature of 80 oC. These features demonstrated that α-amylase from B. subtilis V37 can be applied in many areas such as the food, fermentation, and animal feed industries.


2021 ◽  
Author(s):  
Oladipo Olaniyi

Abstract The goal of this present investigation was to mutagenize Bacillus subtilis with Ethyl Methyl Sulphonate (EMS), screen the mutants for cellulase production and evaluate the influence of different glucose concentrations on their cellulase production potentials. The wild type B. subtilis was treated with 20, 40, 60 and 80 µl of EMS and the mutants generated were screened for cellulase production in minimal salt medium containing carboxylmethylcellulose (CMC) as the carbon source. Quantitatively, cellulase activity and protein contents were determined by dinitrosalicylic acid and Lowry methods respectively. Seven mutants were developed from each of the EMS concentration bringing the total to twenty-eight from all the concentrations. Approximately 14 and 57% of the mutants developed from 40 and 60µl of EMS had higher cellulase activities than the wild type, while none of the mutants developed from 20 and 80 µl of EMS had better activities than the wild type. The supplementation of 0.2, 0.5, 1.0 and 1.5% glucose in enzyme production medium caused approximately 100, 14, 29 and 14% cellulase repression respectively in the mutants developed from 60µl EMS. Mutants MSSS02 and MSSS05 were considered as catabolite insensitive mutants because their cellulase production were enhanced in comparison to wild type.


Sign in / Sign up

Export Citation Format

Share Document