Design of W-band PIN Diode SPDT Switch with Low Loss

2021 ◽  
Vol 36 (7) ◽  
pp. 901-907
Author(s):  
Yun Jiang ◽  
Yuan Ye ◽  
Daotong Li ◽  
Zhaoyu Huang ◽  
Chao Wang ◽  
...  

A W-band PIN diode single pole double throw (SPDT) switch with low insertion loss (IL) was successfully developed using a hybrid integration circuit (HIC) of microstrip and coplanar waveguide (CPW) in this paper. In order to achieve low loss of the SPDT switch, the beam-lead PIN diode 3D simulation model was accurately established in Ansys High Frequency Structure Simulator (HFSS) and the W-band H-plane waveguide-microstrip transition was realized based on the principle of the magnetic field coupling. The key of the proposed method is to design the H-plane waveguide-microstrip transition, it not only realizes the low IL of the SPDT switch, but also the direct current (DC) bias of the PIN diode can be better grounded. In order to validate the proposed design method, a W-band PIN diode SPDT switch is fabricated and measured. The measurement results show that the IL of the SPDT switch is less than 2 dB in the frequency range of 85 to 95 GHz, while the isolation of the SPDT switch is greater than 15 dB in the frequency range of 89.5 to 94 GHz. In the frequency range of 92 to 93 GHz, the IL of the SPDT switch is less than 1.65 dB, and its isolation is higher than 22 dB. Switch rise time and switch fall time of the SPDT switch are smaller than 29ns and 19ns, respectively. Good agreement between the simulations and measurements validates the design method.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2060
Author(s):  
Tongbin Yang ◽  
Xiaotong Guan ◽  
Wenjie Fu ◽  
Dun Lu ◽  
Chaoyang Zhang ◽  
...  

In order to develop wide-band low-loss windows for W-band vacuum electronic devices and easily fabricate them, symmetric and asymmetric pillbox windows are investigated and reported in this paper. A symmetric pillbox window and an asymmetric pillow-box window were designed, simulation optimized, fabricated, and tested. The initial parameters for the two pillbox windows were designed by equivalent circuit theory. Computer simulation technology (CST) three-dimensional (3D) electromagnetic simulation software was used to verify and optimize the design. Because of the uncontrollability of welding during the experiment, this article provides two solutions. One is to measure and reprocess the symmetrical pillbox window with the dielectric sheet welded to reduce the influence of welding on the measurement results; the other is an asymmetrical box window which is designed to avoid the error caused by the welding of the box window. The best experimental results for the symmetric pillbox window were |S21| close to 1 dB and reflection parameter |S11| close to 10 dB in the frequency range of 77–110 GHz. The experimental results for the asymmetric pillbox window were |S21| < 1 dB nearly in the frequency range of 76–109.5 GHz. The experimental results show that both solutions efficiently complete the design of broadband pillbox windows and would potentially be operated in the gigahertz millimeter-wave region.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Md. Arif Hossain ◽  
Syed Iftekhar Ali ◽  
Jakeya Sultana ◽  
Md. Saiful Islam

AbstractA novel photonic crystal fiber (PCF) based on TOPAS, consisting only rectangular slots is presented and analyzed in this paper. The PCF promises not only an extremely low effective material loss (EML) but also a flattened dispersion over a broad frequency range. The modal characteristics of the proposed fiber have been thoroughly investigated using finite element method. The fiber confirms a low EML of 0.009 to 0.01 cm−1 in the frequency range of 0.77–1.05 THz and a flattened dispersion of 0.22±0.01 ps/THz/cm. Besides, some other significant characteristics like birefringence, single mode operation and confinement loss have also been inspected. The simplicity of the fiber makes it easily realizable using the existing fabrication technologies. Thus it is anticipated that the new fiber has the potential to ensure polarization preserving transmission of terahertz signals and to serve as an efficient medium in the terahertz frequency range.


In recent study, in the growth of wireless technology single antenna that works with a specific frequency is becoming outdated. The antenna which is capable to work dynamically is encouraged. To make an antenna to work dynamically, modification in any of the antenna characteristics can be applied. In this proposed work, the antenna which can reconfigure its frequency is designed and analyzed. Microstrip patch antenna is most popular printed type antenna which is suitable for diverse applications. The antenna design consists of three PIN diodes which are placed in different positions on the patch. Depending upon the switching state of PIN diode the antenna can operate in different frequency ranges. The frequency range obtained ranges from 1.38 GHz to 3.24 GHz. Return loss value, VSWR obtained is of optimum level. The various gain of antenna is obtained in simulation. The analysis of the antenna is done in ANSYS HFSS software.


2001 ◽  
Vol 19 (9) ◽  
pp. 1376-1384 ◽  
Author(s):  
T. Yabu ◽  
M. Geshiro ◽  
S. Sawa
Keyword(s):  

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000191-000198 ◽  
Author(s):  
A. Isapour ◽  
D. Bahloul ◽  
A. B. Kouki

Abstract The wireless telecommunication systems have an undeniable role in today's society. The rapid progress of wireless services and applications accelerates demands for high data-rate reliable systems. The 60 GHz band with its 5 GHz globally unlicensed available spectrum, provides a great opportunity for the next generation of high data-rate wireless communication. Despite this attractive bandwidth surrounding 60 GHz, there are still many challenges to be addressed such as the loss performance and the integration with other systems. Low Temperature Cofired Ceramic (LTCC) technology, with its unique and mature multilayer fabrication process, has excellent capability of realizing miniaturized 3D low loss structures to overcome these challenges. Since, one of the key components in any communication system for both interconnecting and designing components is Low loss transmission lines, in this article we overview the performances and challenges for four different most practical transmission lines at 60 GHz in LTCC: Microstrip, Stripline, Coplanar Waveguide (CPW), and LTCC Integrated Waveguide (LIW).


Sign in / Sign up

Export Citation Format

Share Document