scholarly journals Chemical Constituents of the Essential Oil Extracted from Elsholtzia densa and Their Insecticidal Activity against Tribolium castaneum and Lasioderma serricorne

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2304
Author(s):  
Junyu Liang ◽  
Yazhou Shao ◽  
Haoshu Wu ◽  
Yue An ◽  
Junlong Wang ◽  
...  

Storage pests pose a great threat to global food security. Here, we found that the essential oil (EO) extracted from E. densa possesses obvious effects against the insects that threaten stored-products. In this work, we investigated the chemical constituents of the essential oil extracted from Elsholtzia densa, and their insecticidal (contact and fumigant) toxicity against Tribolium castaneum and Lasioderma serricorne. A total of 45 compounds were identified by GC-MS, accounting for 98.74% of the total EO. Meanwhile, 11 compounds were isolated from the EO, including limonene, β-caryophyllene, ρ-cymene, trans-phytol, α-terpineol, linalool, acetophenone, 1,8-cineole, ρ-cymen-7-ol, 1-O-cerotoylgly-cerol, and palmitic acid. Furthermore, acetophenone, ρ-cymen-7-ol, and 1-O-cerotoylgly-cerol were isolated for the first time from Elsholtzia spp. The results of the bioassays indicated that the EO had the property of insecticidal toxicity against T. castaneum and L. serricorne. All of the compounds showed different levels of insecticidal toxicity against the two species of insects. Among them, 2-ethyl-1H-imidazole had no insecticidal toxicity against T. castaneum, but possessed fumigant and obvious contact toxicity against L. serricorne. ρ-Cymen-7-ol had beneficial insecticidal toxicity against the two species of insects, and fumigant toxicity against L. serricorne. ρ-Cymen-7-ol (LD50 = 13.30 μg/adult), 1-octen-3-ol (LD50 = 13.52 μg/adult), and 3-octanol (LD50 = 17.45 μg/adult) showed significant contact toxicity against T. castaneum. Acetophenone (LD50 = 7.07 μg/adult) and ρ-cymen-7-ol (LD50 = 8.42 μg/adult) showed strong contact toxicity against L. serricorne. ρ-Cymene (LC50 = 10.91 mg/L air) and ρ-cymen-7-ol (LC50 = 10.47 mg/L air) showed powerful fumigant toxicity to T. castaneum. Limonene (LC50 = 5.56 mg/L air), acetophenone (LC50 = 5.47 mg/L air), and 3-octanol (LC50 = 5.05 mg/L air) showed obvious fumigant toxicity against L. serricorne. In addition, the EO and its chemical compounds possessed different levels of repellent activity. This work provides some evidence of the value of exploring these materials for insecticidal activity, for human health purposes. We suggest that the EO extracted from E. densa may have the potential to be developed as an insecticidal agent against stored product insect pests.

2014 ◽  
Vol 79 (10) ◽  
pp. 1213-1222 ◽  
Author(s):  
Hai Chen ◽  
Kai Yang ◽  
Chun You ◽  
Shu Du ◽  
Qian Cai ◽  
...  

The essential oil obtained from Citrus wilsonii Tanaka leaves with hydrodistillation was investigated by GC and GC-MS. The main components of the essential oil were identified to be citronellol (16.94%), nerol acetate (10.35%), ?-terpinen (9.85%), citronellal (9.36%) and ?-pinene (6.72%). Among them, the four active constituents, predicted with a bioactivity-test, were isolated and identified as citronellol, ?-terpinene, nerol (neryl) acetate and ?-pinene. It was found that the essential oil of C. wilsonii leaves and isolated compounds possessed fumigant and contact toxicity against Tribolium castaneum adults. The essential oil and ?-terpinen showed strong fumigant toxicity against T. castaneum (LC50 = 8.18 and 4.09 mg L-1). Repellency of the crude oil and active compounds was also determined. Citronellol, neryl acetate and ?-pinene were strongly repellent (100%, 86% and 92%, respectively, at 78.63 nL cm-2, after 2 h treatment) against T. castaneum. The essential oil and citronellol exhibited the same level of repellency compared with the positive control, DEET. The results indicate that the essential oil of C. wilsonii leaves and its active compounds had the potential to be developed as natural fumigants, insecticides and repellents for control of T. castaneum.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Hai Ping Chen ◽  
Kai Yang ◽  
Chun Xue You ◽  
Ning Lei ◽  
Rui Qi Sun ◽  
...  

During our screening program for agrochemicals from Chinese medicinal herbs and wild plants, the essential oil ofCinnamomum camphoraleaves was found to possess strong fumigant and contact toxicity againstLasioderma serricorneadults with LC50/LD50values of 2.5 mg/L air and 21.25 μg/adult, respectively. The essential oil obtained by hydrodistillation was investigated by GC and GC-MS. The main components of the essential oil were identified to beD-camphor (40.54%), linalool (22.92%), cineole (11.26%), and 3,7,11-trimethyl-3-hydroxy-6,10-dodecadien-1-yl acetate (4.50%). Bioactivity-directed chromatographic separation on repeated silica gel columns led to the isolation ofD-camphor and linalool.D-camphor and linalool showed strong fumigant toxicity (LC50= 2.36 and 18.04 mg/L air, resp.) and contact toxicity (LD50= 13.44 and 12.74 μg/adult, resp.) againstL. serricorne. The results indicate that the essential oil ofC. camphoraand its active compounds had the potential to be developed as natural fumigants and insecticides for control ofL. serricorne.


2015 ◽  
Vol 80 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Ying Wang ◽  
Chun You ◽  
Kai Yang ◽  
Ran Chen ◽  
Wen Zhang ◽  
...  

The aim of this research was to determine the chemical constituents and toxicities of essential oil derived from Alpinia blepharocalyx rhizomes against the cigarette beetle, Lasioderma serricorne (Fabricius). Essential oil of A. blepharocalyx rhizomes was obtained from hydrodistillation and was investigated by Gas Chromatography-Mass Spectrometry (GC-MS). A total of 46 components of the essential oil of A. blepharocalyx rhizomes were identified. The principal compounds in A. blepharocalyx essential oil were camphor (23.13%), sabinene (11.27%), ?-pinene (9.81%) and eucalyptol (8.86%) followed by camphene (8.05%), sylvestrene (5.61%) and ?-phellandrene (5.00%). Among them, the four active constituents, predicted with a bioactivity-test, were isolated and identified as camphor, sabinene, ?-pinene and eucalyptol. The essential oil of A. blepharocalyx possessed strong contact toxicity against the cigarette beetle with LD50 value of 15.02 ?g adult-1, and also exhibited strong fumigant toxicity against L. serricorne adults with LC50 value of 3.83 mg L-1 air. The results indicate that the essential oil of A. blepharocalyx shows potential in terms of contact and fumigant toxicities against stored product insects.


2011 ◽  
Vol 6 (6) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Lilian R. Descamps ◽  
Carolina Sánchez Chopa ◽  
Adriana A. Ferrero

Essential oils extracted from leaves and fruits of Schinus areira (Anacardiaceae) were tested for their repellent, toxic and feeding deterrent properties against Tribolium castaneum (Coleoptera: Tenebrionidae) larvae and adults. A topical application assay was employed for the contact toxicity study and filter paper impregnation for the fumigant assay. A treated diet was also used to evaluate the repellent activity and a flour disk bioassay for the feeding deterrent action and nutritional index alteration. The essential oil of the leaves contained mainly monoterpenoids, with α-phellandrene, 3-carene and camphene predominant, whereas that from the fruits contained mainly α-phellandrene, 3-carene and β-myrcene. The leaf essential oil showed repellent effects, whereas that from the fruit was an attractant. Both oils produced mortality against larvae in topical and fumigant bioassays, but fumigant toxicity was not found against adults. Moreover, both essential oils produced some alterations in nutritional index. These results show that the essential oils from S. areira could be applicable to the management of populations of Tribolium castaneum.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 345
Author(s):  
Jun-Yu Liang ◽  
Jie Xu ◽  
Ying-Ying Yang ◽  
Ya-Zhou Shao ◽  
Feng Zhou ◽  
...  

Investigations have indicated that storage pests pose a great threat to global food security by damaging food crops and other food products derived from plants. Essential oils are proven to have significant effects on a large number of stored grain insects. This study evaluated the contact toxicity and fumigant activity of the essential oil extract from the aerial parts of Elsholtzia ciliata and its two major biochemical components against adults and larvae of the food storage pest beetle Tribolium castaneum. Gas chromatography–mass spectrometry analysis revealed 16 different components derived from the essential oil of E. ciliata, which included carvone (31.63%), limonene (22.05%), and α-caryophyllene (15.47%). Contact toxicity assay showed that the essential oil extract exhibited a microgram-level of killing activity against T. castaneum adults (lethal dose 50 (LD50) = 7.79 μg/adult) and larvae (LD50 = 24.87 μg/larva). Fumigant toxicity assay showed LD50 of 11.61 mg/L air for adults and 8.73 mg/L air for larvae. Carvone and limonene also exhibited various levels of bioactivity. A binary mixture (2:6) of carvone and limonene displayed obvious contact toxicity against T. castaneum adults (LD50 = 10.84 μg/adult) and larvae (LD50 = 30.62 μg/larva). Furthermore, carvone and limonene exhibited synergistic fumigant activity against T. castaneum larvae at a 1:7 ratio. Altogether, our results suggest that E. ciliata essential oil and its two monomers have a potential application value to eliminate T. castaneum.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2131 ◽  
Author(s):  
Yang Wang ◽  
Shanshan Guo ◽  
Juqin Cao ◽  
Xue Pang ◽  
Zhe Zhang ◽  
...  

Toxic and repellent effects of the essential oil from Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. were evaluated against Lasioderma serricorne and Liposcelis bostrychophila. The essential oils (EOs) from roots (ER) and leaves (EL) of A. heterotropoides were obtained separately by hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS) analysis. Major components of ER and EL included methyleugenol, safrole, and 3,5-dimethoxytoluene. Both ER and EL of A. heterotropoides showed certain toxicity and repellency against L. serricorne and L. bostrychophila. 3,5-Dimethoxytoluene, methyleugenol, and safrole were strongly toxic via fumigation to L. serricorne (LC50 = 4.99, 10.82, and 18.93 mg/L air, respectively). Safrole and 3,5-dimethoxytoluene possessed significant fumigant toxicity against L. bostrychophila (LC50 = 0.83 and 0.91 mg/L air, respectively). The three compounds all exhibited potent contact toxicity against the two insect species. Here, the EL of A. heterotropoides was confirmed to have certain toxicity and repellency against stored product insects, providing a novel idea for the comprehensive use of plant resources.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 842
Author(s):  
Xing Huang ◽  
Yulin Huang ◽  
Chunyue Yang ◽  
Tiantian Liu ◽  
Xing Liu ◽  
...  

Many plants show significant biological activity against pests due to their unique chemical constituents. It is important to identify effective constituents for their development and utilization as botanical pesticides. Our previous study showed that Artemisia lavandulaefolia essential oil had biological activity against Plutella xylostella. Here, we isolated and identified the constituents of essential oil from A. lavandulaefolia by silica gel column chromatography. The main constituents identified were eucalyptol and caryophyllene oxide, and they were confirmed by gas chromatography–mass spectrometry (GC–MS). Eucalyptol and caryophyllene oxide showed strong contact toxicity against P. xylostella larvae after 24 h of application (Median lethal dose, LD50 = 76.97 μL/mL and 20.71 mg/mL. Furthermore, the two active constituents against P. xylostella adults showed significant fumigant activity (Mmedian lethal concentration, LC50 = 3.25 μL/L and 1.06 mg/L, respectively. Finally, we measured the detoxification enzymes and acetylcholinesterase of the larvae treated with active constituents. The eucalyptol-treated larvae displayed enhanced carboxylesterase (CarE) and glutathione-S-transferase (GST) activities in an in vivo experiment, but it was lower for acetylcholinesterase (AchE) activity. The activities of the CarE and GST significantly decreased when exposed to caryophyllene oxide. In general, the two active constituents, eucalyptol and caryophyllene oxide, showed high insecticidal activity, which demonstrates their potential to be used as natural insecticides.


2013 ◽  
Vol 68 (1-2) ◽  
pp. 13-18 ◽  
Author(s):  
Zhi Long Liu ◽  
Guo Hua Jiang ◽  
Ligang Zhou ◽  
Qi Zhi Liu

Water-distilled essential oil from the aerial parts of Dipsacus japonicus Miq. (Dipsacaceae) at the flowering stage was analysed by gas chromatography-mass spectrometry (GC-MS). Forty-six compounds, accounting for 96.76% of the total oil, were identified and the main compounds of the essential oil were linalool (11.78%), trans-geraniol (8.58%), 1,8-cineole (7.91%), β-caryophyllene (5.58%), α-terpineol (5.32%), β-selinene (5.15%), and spathulenol (5.04%). The essential oil of D. japonicus possessed contact toxicity against two grain storage insects, Sitophilus zeamais and Tribolium castaneum adults, with LD50 values of 18.32 μg/ adult and 13.45 μg/adult, respectively. The essential oil of D. japonicus also exhibited pronounced fumigant toxicity against S. zeamais (LC50 = 10.11 mg/l air) and T. castaneum adults (LC50 = 5.26 mg/l air). Of the three major compounds, 1,8-cineole exhibited stronger fumigant toxicity than the crude essential oil against S. zeamais and T. castaneum adults with LC50 values of 2.96 mg/l air and 4.86 mg/l air, respectively


2013 ◽  
Vol 59 (4) ◽  
pp. 86-96 ◽  
Author(s):  
Iyad Ghanem ◽  
Adnan Audeh ◽  
Amer Abu Alnaser ◽  
Ghaleb Tayoub

Abstract The objective of current study was to determine the chemical constituents and fumigant toxicity of essential oil isolated by hydro-distillation from dry fruit of bitter fennel (Foeniculum vulgare Miller). The chemical composition of the essential oil was assessed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Constituents of the oil were determined as α-pinene (1.6%) and limonene (3.3%), fenchone (27.3%), estragol (3.9%), and (E)-anethole (61.1%). The fumigant toxicity of the essential oil was tested on larvae of the stored product insect Trogoderma granarium Everts. The mortality of larvae was tested at different concentrations ranging from 31.2 to 531.2 μl/l air and at different exposure times (24 and 48 h). Probit analysis showed that LC50 and LC90 following a 48 h-exposure period for essential oil were 38.4 and 84.6 μl/l, respectively. These results showed that the essential oil from F. vulgare may be applicable to the management of populations of stored-product insects.


2013 ◽  
Vol 37 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Patrícia Fontes Pinheiro ◽  
Vagner Tebaldi de Queiroz ◽  
Vando Miossi Rondelli ◽  
Adilson Vidal Costa ◽  
Tiago de Paula Marcelino ◽  
...  

The thrips, Frankliniella schultzei, and green peach aphid, Myzus persicae, cause direct damage to plants of economic importance and transmit phytoviruses, causing large economic losses. Chemical constituents of essential oils present a wide range of biological activities. The aim of this work was to evaluate insecticidal activity of essential oil from citronella grass, Cymbopogon winterianus, on F. schultzei and M. persicae. This essential oil was obtained by steam distillation and components were identified by GC/FID and GC/MS. A Potter spray tower was used to spray insects with the essential oil. The major constituents are geraniol (28.62%), citronellal (23.62%) and citronellol (17.10%). Essential oil of C. winterianus at 1% (w v-1) causes mortality in F. schultzei and M. persicae at 34.3% and 96.9%, respectively. The LC50 value for M. persicae was 0.36% and LC90 0.66%. Thus, citronella grass essential oil at 1% (w v-1) is more toxic to M. persicae than F. schultzei. This essential oil shows promise for developing pesticides to manage M. persicae.


Sign in / Sign up

Export Citation Format

Share Document