fwo method
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 2)

Author(s):  
Yalin Wang ◽  
Beibei Yan ◽  
Yu Wang ◽  
Jiahao Zhang ◽  
Xiaozhong Chen ◽  
...  

This paper presents comparative research on the combustion of coal, wheat, corn straw (CS), beet residues after extracting sugar (BR), and their blends, coal–corn straw blends (CCSBs), coal–wheat blends (CWBs), and coal–beet residue blends (CBRBs), using thermogravimetric (TG) analysis under 10, 20, 30, 40 and 50 °C/min. The test results indicate that CS and wheat show better combustion properties than BR, which are recommended to be used in biomass combustion. Under the heating rate of 20 °C/min, the coal has the longest thermal reaction time when compared with 10 and 30 °C/min. Adding coal to the biomass can improve the burnout level of biomass materials (BM), reduce the burning speed, and make the reaction more thorough. The authors employed the Flynn–Wall–Ozawa (FWO) method and the Kissinger–Akahira–Sunose (KAS) method to calculate kinetics parameters. It was proven that overall, the FWO method is better than the KAS method for coal, BM, and coal–biomass blends (CBBs), as it provides higher correlations in this study. It is shown that adding coal to wheat and BR decreases the activation energy and makes conversion more stable under particular α. The authors selected a wider range of biomass raw materials, made more kinds of CBB, and conducted more studies on different heating rates. This research can provide useful insights into how to choose agricultural residuals and how to use them.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1830
Author(s):  
Ananya Thomas ◽  
Khalid Moinuddin ◽  
Svetlana Tretsiakova-McNally ◽  
Paul Joseph

In the present paper, we report on a detailed study regarding the thermal degradation behaviours of some bio-sourced substrates. These were previously identified as the base materials in the formulations for fireproofing wood plaques through our investigations. The substrates included: β-cyclodextrin, dextran, potato starch, agar-agar, tamarind kernel powder and chitosan. For deducing the Arrhenius parameters from thermograms obtained through routine thermogravimetric analyses (TGA), we used the standard Flynn–Wall–Ozawa (FWO) method and employed an in-house developed proprietary software. In the former case, five different heating rates were used, whereas in the latter case, the data from one dynamic heating regime were utilized. Given that the FWO method is essentially based on a model-free approach that also makes use of multiple heating rates, it can be considered in the present context as superior to the one that is dependent on a single heating rate. It is also relevant to note here that the values of energy of activation (Ea) obtained in each case should only be considered as apparent values at best. Furthermore, some useful, but limited, correlations were identified between the Ea values and the relevant parameters obtained earlier by us from pyrolysis combustion flow calorimetry (PCFC).


2020 ◽  
Vol 993 ◽  
pp. 344-350
Author(s):  
Zong Pei Wu ◽  
Zhu Qing Cheng ◽  
Zhong Bo Yang ◽  
Wei Yi ◽  
Xiao Lu Xu

Differential scanning calorimetry (DSC) was used to study non-isothermal kinetics of α→β transformation of Zr-0.5wt%Sn-0.15wt%Nb-0.5wt%Fe-0.25wt%V alloy. The DSC curves were measured from room temperature to 1030 °C at the heating rate of 15, 20, 30, 50°C /min respectively. The Flynn-Wall-Ozawa (FWO) method was used to get the activation energy (E) of α→β transformation at different conversion ratios. Then the values of activation energy obtained were modified by Ozawa iterative equation. The kinetic mechanism functions of α→β transformation were investigated by Criado-Ortega methods. The results show that the activation energy is related to conversion ratios. It means α→β transformation is not a simple one-step reaction but a complex multi-step reaction. The most probable kinetic mechanism functions are different in different temperature ranges, which are -ln(1-x) for ≤830 °C, [-ln(1-x)]1/2 for 834~848 °C, [-ln(1-x)]2/5for 850~856 °C and [-ln(1-x)]1/3 for 858~868 °C respectively.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 636 ◽  
Author(s):  
Chin-Hao Yeh ◽  
Teng-Chun Yang

In this study, four types of waste bamboo fibers (BFs), Makino bamboo (Phyllostachys makinoi), Moso bamboo (Phyllostachys pubescens), Ma bamboo (Dendrocalamus latiflorus), and Thorny bamboo (Bambusa stenostachya), were used as reinforcements and incorporated into polypropylene (PP) to manufacture bamboo–PP composites (BPCs). To investigate the effects of the fibers from these bamboo species on the properties of the BPCs, their chemical compositions were evaluated, and their thermal decomposition kinetics were analyzed by the Flynn–Wall–Ozawa (FWO) method and the Criado method. Thermogravimetric results indicated that the Makino BF was the most thermally stable since it showed the highest activation energy at various conversion rates that were calculated by the FWO method. Furthermore, using the Criado method, the thermal decomposition mechanisms of the BFs were revealed by diffusion when the conversion rates (α) were below 0.5. When the α values were above 0.5, their decomposition mechanisms trended to the random nucleation mechanism. Additionally, the results showed that the BPC with Thorny BFs exhibited the highest moisture content and water absorption rate due to this BF having high hemicellulose content, while the BPC with Makino BFs had high crystallinity and high lignin content, which gave the resulting BPC better tensile properties.


2020 ◽  
Vol 38 (8) ◽  
pp. 903-910 ◽  
Author(s):  
Zhitong Yao ◽  
Jingjing Xiong ◽  
Shaoqi Yu ◽  
Weiping Su ◽  
Weihong Wu ◽  
...  

In this study, the pyrolysis behaviour of nonmetal fraction of waste printed circuit boards (NMF-WPCBs) was studied based on five model-free methods and distributed activation energy model (DAEM). The possible decomposition mechanism was further probed using the Criado method. Thermogravimetric analysis indicated that the NMF-WPCBs pyrolysis process could be divided into three stages with temperatures of 37–330°C, 330–380°C and 380–1000°C. The mass loss at different heating rate was determined as 26.85–29.98%, 13.47–24.21% and 20.43–23.36% for these stages, respectively. The activation energy ( Eα) from various model-free methods first increased with degree of conversion ( α) increasing from 0.05 to 0.275, and then decreased beyond this range. The coefficient ( R) from the Flynn–Wall–Ozawa (FWO) method was higher, and the resulting Eα fell into the range of 214.947–565.660 kJ mol−1. For the DAEM method, the average Eα value was determined as 337.044 kJ mol−1, comparable with 329.664 kJ mol−1 from the FWO method. The thermal decomposition kinetics of NMF-WPCBs could be better described by the second-order reaction.


2019 ◽  
Vol 38 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Zhitong Yao ◽  
Shaoqi Yu ◽  
Weiping Su ◽  
Daidai Wu ◽  
Weihong Wu ◽  
...  

Thermal treatment offers an alternative method for the separation of aluminum foil and cathode materials during spent lithium-ion batteries recycling. In this work, the combustion kinetic of cathode was studied based on six model-free (isoconversional) methods, namely Flynn–Wall–Ozawa (FWO), Friedman, Kissinger–Akahira–Sunose, Starink, Tang, and Boswell methods. The possible decomposition mechanism was also probed using a master-plots method (Criado method). Thermogravimetric analysis showed that the whole thermal process could be divided into three stages with temperatures of 37–578°C, 578–849°C, and 849–1000°C. The activation energy ( Eα) derived from these model-free methods displayed the same trend, gradually increasing with a conversion range of 0.002–0.013, and significantly elevating beyond this range. The coefficients from the FWO method were larger, and the resulted Eα fell into the range of 10.992–40.298 kJ/mol with an average value of 20.228 kJ/mol. Comparing the theoretical master plots with an experimental curve, the thermal decomposition of cathode could be better described by the geometric contraction models.


2019 ◽  
Vol 11 (8) ◽  
pp. 2280 ◽  
Author(s):  
Zuhal Akyürek

In this study sustainable valorization of cattle manure, recycled polyester, and their blend (1:1 wt.%) were examined by the thermogravimetric analysis (TGA) method. Pyrolysis tests were performed at 10, 30, and 50 °C/min heating rate from room temperature to 1000 °C under a nitrogen environment with a flow of 100 cm3/min. Kinetics of decomposition were analyzed by using Flynn–Wall–Ozawa (FWO) method. Based on activation energies and conversion points, a single region was established for recycled polyester while three regions of pyrolysis were obtained for cattle manure and their blend. Comparison between experimental and theoretical profiles indicated synergistic interactions during co-pyrolysis in the high temperature region. The apparent activation energies calculated by FWO method for cattle manure, recycled polyester. and their blend were 194.62, 254.22 and 227.21 kJ/mol, respectively. Kinetics and thermodynamic parameters, including E, ΔH, ΔG, and ΔS, have shown that cattle manure and recycled polyester blend is a remarkable feedstock for bioenergy.


2017 ◽  
Vol 42 (2) ◽  
pp. 126-135 ◽  
Author(s):  
Daiwang Song ◽  
Jing Wang ◽  
Yushan Zhang ◽  
Yuhui Ma

The pyrolysis of waste disposable paper cups (WDPCs) was investigated using a thermogravimetric analyser coupled with a Fourier transform infrared spectrometer. The activation energies of the pyrolysis reactions were obtained by the Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods respectively. The kinetic model was determined by the master plots method. Thermogravimetric results showed that the highest weight loss rate occurred from 345 to 365 °C as the heating rate was increased from 10 to 30 °C min−1, indicating the pyrolysis of cellulosic material in the WDPC. The weight loss between 400 and 500 °C can be attributed to the decomposition of polyethylene. By analysing the FTIR spectra, it was found that the absorbance of all the evolved gaseous products had peaks at 360 °C due to the decomposition of cellulose fibres and the cracking of polyethylene at 485 °C led to the emergence of a second hydrocarbon peak. Ketones were the most abundant condensable organic products and CO2 was the dominating gaseous product, which can also be produced via secondary cracking of the small molecule organics above 400 °C. Kinetic analysis revealed that the average activation energy of the pyrolysis of the WDPC was 153.75 kJ mol−1 from the FWO method and 151.43 kJ mol−1 from the KAS method. The reaction mechanism can be described by the R3 model.


2016 ◽  
Vol 30 (2) ◽  
pp. 255-272 ◽  
Author(s):  
Xilei Chen ◽  
Lili Huo ◽  
Jianbo Liu ◽  
Chuanmei Jiao ◽  
Shaoxiang Li ◽  
...  

Flame-retardant polyurethane elastomers (PUEs) have been prepared using trichloroethyl phosphate (TCEP) as flame retardant. The combustion performances and thermal decomposition properties of PUEs were studied using cone calorimetry test and thermogravimetric analysis, respectively. Kissinger method and Flynn–Wall–Ozawa (FWO) method were adopted to discuss the pyrolysis kinetics of PUEs. The experimental results showed that TCEP has good flame-retardant effect for PUE. With the increase of TCEP, the peak heat release rate and total heat release values decrease. A good diagram of linear regression can be obtained from both Kissinger and FWO methods. The activation energy values of flam- retardant PUE can be calculated from FWO method at different conversion rates.


2014 ◽  
Vol 9 (2) ◽  
pp. 155892501400900
Author(s):  
Tao Wang ◽  
Xianlin Xu ◽  
Yanlin Ren ◽  
Songtao Qin ◽  
Xiaoyang Sui ◽  
...  

The thermal decomposition behavior of fire retardant viscose fiber and viscose fiber were studied by thermogravimetric analysis (TGA) under air atmosphere at heating rates of 10, 20, 30 and 40oC/min. The activation energy and pre-exponential factor were calculated by using the Kissinger method, Flynn-Wall-Ozawa (FWO) method and Satava-Sestak method. The results show that the activation energy for the fire retardant viscose fiber calculated by Kissinger and FWO method was 102.51kJ/mol and 103.73kJ/mol, respectively. The activation energy for viscose fiber calculated by Kissinger and FWO method was 103.58 kJ/mol and 104.83kJ/mol, respectively. The kinetic mechanism function of fire retardant viscose fiber was G(α) = [(1+ α)13-1]2 following a kinetic model of three-dimensional diffusion and the kinetic mechanism function of viscose fiber was G(α) = α3/2 following the power function rule.


Sign in / Sign up

Export Citation Format

Share Document