scholarly journals In Situ Grafted Composite Nanoparticles-Reinforced Polyurethane Elastomer Composites with Excellent Continuous Anti-Impact Performance

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6195
Author(s):  
Feng Qi ◽  
Zhuoyu Zheng ◽  
Zehui Xiang ◽  
Biao Zhang ◽  
Fugang Qi ◽  
...  

Polyurethane elastomer (PUE) has attracted much attention in impact energy absorption due to its impressive toughness and easy processability. However, the lack of continuous impact resistance limits its wider application. Here, an amino-siloxane (APTES) grafted WS2-coated MWCNTs (A-WS2@MWCNTs) filler was synthesized, and A-WS2@MWCNTs/PUE was prepared by using the filler. Mechanical tests and impact damage characterization of pure PUE and composite PUE were carried out systematically. Compared with pure PUE, the static compressive strength and dynamic yield stress of A-WS2@MWCNTs/PUE are increased by 144.2% and 331.7%, respectively. A-WS2@MWCNTs/PUE remains intact after 10 consecutive impacts, while the pure PUE appears serious damage after only a one-time impact. The improvement of mechanical properties of A-WS2@MWCNTs/PUE lies in the interfacial interaction and synergy of composite fillers. Microscopic morphology observation and damage analysis show that the composite nanofiller has suitable interfacial compatibility with the PUE matrix and can inhibit crack growth and expansion. Therefore, this experiment provides an experimental and theoretical basis for the preparation of PUE with excellent impact resistance, which will help PUE to be more widely used in the protection field.

Rare Metals ◽  
2021 ◽  
Author(s):  
An Xie ◽  
Shen-Wei Mao ◽  
Tian-Jiang Chen ◽  
Hui Yang ◽  
Ming Zhang

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2264
Author(s):  
Raphael H. M. Reis ◽  
Fabio C. Garcia Filho ◽  
Larissa F. Nunes ◽  
Veronica S. Candido ◽  
Alisson C. R. Silva ◽  
...  

Fibers extracted from Amazonian plants that have traditionally been used by local communities to produce simple items such as ropes, nets, and rugs, are now recognized as promising composite reinforcements. This is the case for guaruman (Ischinosiphon körn) fiber, which was recently found to present potential mechanical and ballistic properties as 30 vol% reinforcement of epoxy composites. To complement these properties, Izod impact tests are now communicated in this brief report for similar composites with up to 30 vol% of guaruman fibers. A substantial increase in impact resistance, with over than 20 times the absorbed energy for the 30 vol% guaruman fiber composite, was obtained in comparison to neat epoxy. These results were statistically validated by Weibull analysis, ANOVA, and Tukey’s test. Scanning electron microscopy analysis disclosed the mechanisms responsible for the impact performance of the guaruman fiber composites.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1615
Author(s):  
Qiong Li ◽  
Jürgen Gluch ◽  
Zhongquan Liao ◽  
Juliane Posseckardt ◽  
André Clausner ◽  
...  

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.


2007 ◽  
Vol 22 (2) ◽  
pp. 428-436 ◽  
Author(s):  
S. Jayalakshmi ◽  
J.P. Ahn ◽  
K.B. Kim ◽  
E. Fleury

We report the hydrogenation characteristics and mechanical properties of Ti50Zr25Cu25 in situ composite ribbons, composed of β-Ti crystalline phase dispersed in an amorphous matrix. Upon cathodic charging at room temperature, high hydrogen absorption up to ∼60 at.% (H/M = ∼1.2) is obtained. At such a high concentration, hydrogen-induced amorphization occurs. Mechanical tests conducted on the composite with varying hydrogen concentrations indicate that the Ti50Zr25Cu25 alloy is significantly resistant to hydrogen embrittlement when compared to conventional amorphous alloys. A possible mechanism that would contribute toward hydrogen-induced amorphization and hydrogen embrittlement is discussed.


2013 ◽  
Vol 768-769 ◽  
pp. 60-65 ◽  
Author(s):  
Julia Repper ◽  
Markus Niffenegger ◽  
Steven van Petegem ◽  
Werner Wagner ◽  
Helena van Swygenhoven

Complex strain paths are often applied to materials during production processes. This paper shows the first successful in-situ biaxial mechanical tests during neutron diffraction performed on a cruciform steel sample and reports on the differences compared to uniaxial deformation. Digital image correlation is demonstrated to be an appropriate tool to monitor spatially resolved the macroscopic straining. The new, modular biaxial machine that will be installed at the neutron diffractometer POLDI is presented.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


1969 ◽  
Vol 129 (6) ◽  
pp. 1235-1246 ◽  
Author(s):  
Esther F. Hays

Work has been presented which suggests that thymus epithelial reticular cells are not effective in restoring the microscopic morphology of lymphoid tissues and their immunologic capacities. They function in recruiting precursors of thymus lymphocytes from the host animals to produce an organ which, after it becomes architecturally normal, can reconstitute the defective host. Intact thymus grafts in situ from 10–14 days, but not for shorter periods of time, have been shown to result in a return toward normal of these two parameters. Evidence is offered to show that few dividing cellular components in the lymphoid tissue originate from the thymus remnant grafts, and that a minor cellular component is contributed by the intact grafts. These data support the concept that the structural and functional development of the lymphatic tissue in thymectomized animals is dependent on thymus lymphoid cells and/or their products, and that the epithelial-reticular cells do not have a direct action in peripheral lymphoid reconstitution.


2018 ◽  
Vol 184 ◽  
pp. 71-87 ◽  
Author(s):  
Qiwei SHI ◽  
Stéphane Roux ◽  
Félix Latourte ◽  
François Hild ◽  
Dominique Loisnard ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document