scholarly journals Influence of (Sub) Structure Development within Rotary Swaged Al–Cu Clad Conductors on Skin Effect during Transfer of Alternating Current

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 650
Author(s):  
Lenka Kunčická ◽  
Radim Kocich ◽  
Petr Kačor ◽  
Michal Jambor ◽  
Miroslav Jopek

The nature of alternating current transfer via metallic materials is specific, since the current density tends to be inhomogeneous across the cross-section of the conductor and the skin effect tends to occur. However, the influence of this effect on the behaviour of the conductor can be optimized via the design and fabrication procedures. The study presents innovative design of an Al–Cu clad conductor, which is supposed to affect favourably the influence of the skin effect. The clad conductors of various diameters (20 mm, 15 mm, and 10 mm) were fabricated via rotary swaging at room temperature, and their electric characteristics were subsequently examined both experimentally and via numerical simulations. Structure analyses performed to document the effects of the swaging technology on the development of substructure and characteristic structural features were carried out by scanning electron microscopy (electron backscatter diffraction analyses), and transmission electron microscopy. The results showed that the design of the composite has a favourable effect on decreasing the power losses during alternating current transfer and that the substructure development affected favourably the electric resistance of the conductor. The highest electric resistance was measured for the composite conductor with the diameter of 20 mm (1.8% increase compared to electric resistance during transfer of direct current). This value then decreased to 0.6%, and 0.1% after swaging down to the diameters of 15 mm, and 10 mm; the 10 mm composite featured the finest grains, partially restored structure, and texture randomization compared to the 20 mm and 15 mm composites. Manufacturing of the clad composite via rotary swaging imparted advantageous combinations of both the electric and mechanical properties, as swaging also introduced increased microhardness.

Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Alexander Klumpp ◽  
Alexander Kauffmann ◽  
Sascha Seils ◽  
Stefan Dietrich ◽  
Volker Schulze

AbstractIn this study, the influence of cold rotary swaging on microstructure and mechanical properties of the precipitation-strengthened nickel-based superalloy 718 (Alloy 718) was investigated. The initial stages of work-hardening were characterized by means of microhardness, electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) analyses. Furthermore, attention was devoted to the mechanical behavior at ambient and elevated temperature (550 °C) in uniaxial tension and compression. Rotary swaging to different true strains of maximum $$\varphi = 0.91$$ φ = 0.91 caused a moderate increase of microhardness and enhanced markedly the load-bearing capacity in tension, giving rise to yield strength beyond 2000 MPa. The mechanical strength $$R_{p0.2}$$ R p 0.2 in tension subsequent to rotary swaging perfectly correlates with increasing dislocation density $$\rho $$ ρ estimated from XRD in the form of a Taylor-like relationship $$R_{p0.2} \propto \sqrt{\rho }$$ R p 0.2 ∝ ρ . In compression, transient stress–strain evolution without the occurrence of a clear elastic range and distinct yield phenomenon was observed. Restoration of the elastic range, accompanied by a pronounced increase of microhardness, was obtained by a post-swaging tempering treatment at 600 °C.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Aleksandra Kozłowska ◽  
Adam Grajcar ◽  
Aleksandra Janik ◽  
Krzysztof Radwański ◽  
Ulrich Krupp ◽  
...  

AbstractAdvanced medium-Mn sheet steels show an opportunity for the development of cost-effective and light-weight automotive parts with improved safety and optimized environmental performance. These steels utilize the strain-induced martensitic transformation of metastable retained austenite to improve the strength–ductility balance. The improvement of mechanical performance is related to the tailored thermal and mechanical stabilities of retained austenite. The mechanical stability of retained austenite was estimated in static tensile tests over a wide temperature range from 20 °C to 200 °C. The thermal stability of retained austenite during heating at elevated temperatures was assessed by means of dilatometry. The phase composition and microstructure evolution were investigated by means of scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy techniques. It was shown that the retained austenite stability shows a pronounced temperature dependence and is also stimulated by the manganese addition in a 3–5% range.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Shu Wang ◽  
Yilong Liang ◽  
Hao Sun ◽  
Xin Feng ◽  
Chaowen Huang

The main objective of the present study was to understand the oxygen ingress in titanium alloys at high temperatures. Investigations reveal that the oxygen diffusion layer (ODL) caused by oxygen ingress significantly affects the mechanical properties of titanium alloys. In the present study, the high-temperature oxygen ingress behavior of TC21 alloy with a lamellar microstructure was investigated. Microstructural characterizations were analyzed through optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Obtained results demonstrate that oxygen-induced phase transformation not only enhances the precipitation of secondary α-phase (αs) and forms more primary α phase (αp), but also promotes the recrystallization of the ODL. It was found that as the temperature of oxygen uptake increases, the thickness of the ODL initially increases and then decreases. The maximum depth of the ODL was obtained for the oxygen uptake temperature of 960 °C. In addition, a gradient microstructure (αp + β + βtrans)/(αp + βtrans)/(αp + β) was observed in the experiment. Meanwhile, it was also found that the hardness and dislocation density in the ODL is higher than that that of the matrix.


2015 ◽  
Author(s):  
Ludmila L. Meisner ◽  
Alexey A. Neiman ◽  
Alexander I. Lotkov ◽  
Nikolai N. Koval ◽  
Viktor O. Semin ◽  
...  

2009 ◽  
Vol 24 (3) ◽  
pp. 647-651 ◽  
Author(s):  
M. Rester ◽  
C. Motz ◽  
R. Pippan

Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses of small indentations in copper single crystals exhibit only slight changes of the crystal orientation in the surroundings of the imprints. Far-reaching dislocations might be the reason for these small misorientation changes. Using EBSD and TEM technique, this work makes an attempt to visualize the far-propagating dislocations by introducing a twin boundary in the vicinity of small indentations. Because dislocations piled up at the twin boundary produce a misorientation gradient, the otherwise far-propagating dislocations can be detected.


Sign in / Sign up

Export Citation Format

Share Document