portable communication
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 11 (5) ◽  
pp. 7720-7729
Author(s):  
D. Vatamanu ◽  
S. Miclaus

The growing evidence of increased magnetite nanoparticles (both endo- and exo-genic) in the human brain raises the importance of assessing the entire power deposition when electromagnetic waves at GHz frequencies propagate in such tissues. This frequency range corresponds to many popular portable communication devices that emit radiation close to a human's head. At these frequencies, the current dosimetric numerical codes can not accurately compute the magnetic losses part. This is due to the lack of an implemented computational algorithm based on solving the coupled Maxwell and Landau-Lifshitz-Gilbert equations, in the case of magneto-dielectrics, considering eddy currents losses and specific properties of magnetic sub-millimetric particles. This paper focuses on analyzing the limits and the inconsistencies when using commercial dosimetric numerical software to analyze the total absorbed power in brain models having ferrimagnetic content and being exposed to 3.5GHz electromagnetic waves. Magnetic losses computed using Polder’s permeability tensor as constitutive relation lead to unreliable results. However, using such software can provide a preliminary view of the electromagnetic impact of ultra- and super-high frequencies on magnetic-dielectric tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rezaul Azim ◽  
Touhidul Alam ◽  
Md Sharif Mia ◽  
Ali F. Almutairi ◽  
Mohammad Tariqul Islam

AbstractDue to the rapid development of wireless communication systems, good numbers of services and devices use different frequency bands and protocols. To concurrently cover all these services, the antenna in communication devices should operate over multiple frequency bands. The use of wide and multi-band antennas not only reduces the number of antennas necessary to cover multiple frequency bands but also lessens the system complexity, size, and costs. To operate over eight frequency bands to cover sixteen well-established narrow service bands, a planar monopole antenna is proposed for portable communication devices. The proposed antenna is comprised of an inverted F-shaped monopole patch with a rotated L-shaped strip and an F-shaped ground strip with a rotated L-shaped branch. The studied antenna can excite at multiple resonant modes which helps it to achieve eight measured operating bands of 789–921 MHz, 1367–1651 MHz, 1995–2360 MHz, 2968–3374 MHz, 3546–3707, 4091–4405 MHz, 4519–5062 MHz and 5355–6000 MHz. The achieved measured operating bands can cover sixteen popular narrow service bands for 4G/3G/2G, MWT, WiFi, WiMAX, WLAN, and sub-6 GHz 5G wireless communication system. The studied antenna achieved good gain, efficiency and exhibits stable radiation characteristics. Moreover, the antenna does not use any lumped element and left ample space for other circuitries which makes it easier to use in portable devices such as tablets, laptops, etc. with low manufacturing cost.


2021 ◽  
Author(s):  
BALAMURUGAN C ◽  
Marichamy P

Abstract Modern portable communication devices require a compact antenna with superior performance and lower weight and size. The design and development of such a compact size antenna is a major challenge for the researchers. In this proposed work compact slot based triangular patch antenna to work at the multiple resonance frequencies from 5 GHz to 10 GHz using FR4 substrate is presented. Proposed antenna is simulated using High Frequency Structural Simulator (HFSS 2020R1). Simulated and fabricated antenna test results shows that proposed antenna can be suitably employed for the portable wireless transceivers in C and X band. Proposed slot based triangular patch antenna achieves the peak gain of 8 dBi and has the good impedance matching properties such that return loss S11is less than -10 dB and VSWR value is very closer to 1 at all the resonance frequencies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ahmed E. Hassanien ◽  
Michael Breen ◽  
Ming-Huang Li ◽  
Songbin Gong

Abstract The low propagation loss of electromagnetic radiation below 1 MHz offers significant opportunities for low power, long range communication systems to meet growing demand for Internet of Things applications. However, the fundamental reduction in efficiency as antenna size decreases below a wavelength (30 m at 1 MHz) has made portable communication systems in the very low frequency (VLF: 3–30 kHz) and low frequency (30–300 kHz) ranges impractical for decades. A paradigm shift to piezoelectric antennas utilizing strain-driven currents at resonant wavelengths up to five orders of magnitude smaller than electrical antennas offers the promise for orders of magnitude efficiency improvement over the electrical state-of-the-art. This work demonstrates a lead zirconate titanate transmitter > 6000 times more efficient than a comparably sized electrical antenna and capable of bit rates up to 60 bit/s. Detailed analysis of design parameters offers a roadmap for significant future improvement in both radiation efficiency and data rate.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei-Chiang Jhang ◽  
Jwo-Shiun Sun

This paper presents the low profile, planar, and small-size antenna design for WWAN, LTE, and 5G (5th generation wireless systems) for use in portable communication equipment. The antenna occupies only 65 × 13 × 0.4 mm3, and the antenna is combined with a 200 × 260 mm2 copper plate to simulated system ground plane. In the low band, a direct-fed right-side arm and a coupled-fed arm implemented can excite a 1/4 λ fundamental resonant mode at 0.85 and 0.76 GHz to cover 0.698–0.96 GHz and upper 3/4 λ and 5/4 λ resonant modes are controlled by L-shaped element at 2.34, 2.69, 3.4, and 4.0 GHz to cover 1.71–2.69 GHz and 3.2–4.2 GHz. The direct-fed left-side arm produced 1/4 λ to cover 5.15–5.85 GHz. In far-field measured, peak gain and efficiency in low, middle, and high bands are 0.43–5.67 dBi and 55–86%. Finally, experiments demonstrate that the present antenna exhibits a good performance for portable devices.


2020 ◽  
Vol 12 (7) ◽  
pp. 119
Author(s):  
Vita Santa Barletta ◽  
Danilo Caivano ◽  
Antonella Nannavecchia ◽  
Michele Scalera

The diffusion of embedded and portable communication devices on modern vehicles entails new security risks since in-vehicle communication protocols are still insecure and vulnerable to attacks. Increasing interest is being given to the implementation of automotive cybersecurity systems. In this work we propose an efficient and high-performing intrusion detection system based on an unsupervised Kohonen Self-Organizing Map (SOM) network, to identify attack messages sent on a Controller Area Network (CAN) bus. The SOM network found a wide range of applications in intrusion detection because of its features of high detection rate, short training time, and high versatility. We propose to extend the SOM network to intrusion detection on in-vehicle CAN buses. Many hybrid approaches were proposed to combine the SOM network with other clustering methods, such as the k-means algorithm, in order to improve the accuracy of the model. We introduced a novel distance-based procedure to integrate the SOM network with the K-means algorithm and compared it with the traditional procedure. The models were tested on a car hacking dataset concerning traffic data messages sent on a CAN bus, characterized by a large volume of traffic with a low number of features and highly imbalanced data distribution. The experimentation showed that the proposed method greatly improved detection accuracy over the traditional approach.


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Shanwen Hu ◽  
Yunqing Hu ◽  
Haiyu Zheng ◽  
Weiguang Zhu ◽  
Yiting Gao ◽  
...  

In the RF (Radio Frequency) front-end of a communication system, bandpass filters (BPFs) are used to send passband signals and reject stopband signals. Substrate-integrated waveguides (SIW) are widely used in RF filter designs due to their low loss and low cost and the flexibility of their integration properties. However, SIW filters under 6 GHz are still too large to meet the requirement of portable communication devices due to their long wavelength. In this paper, a very compact fully integrated SIW filter is proposed and designed with RT6010 dielectric material to meet the small size requirement of portable devices for next-generation sub-6 G applications. The proposed filter contains two sawtooth-shaped composite right-/left-handed (CRLH) resonator units, instead of traditional rectangular-shaped CRLH resonator units, which makes the filter more compact and cost effective. The filter is designed and fabricated on an RT6010 substrate, with a size of only 10 mm × 7.4 mm. The measurement results illustrated that the proposed BPF shows a passband covering the frequency range of 3.25–3.45 GHz; the minimum passband insertion loss is only 2.4 dB; the stopband rejection is better than −20 dB throughout the frequencies below 3.0 GHz and above 3.8 GHz; S11 is as low as −37 dB at 3.35 GHz; and the group delay variation is only 1.4 ns throughout the operation bandwidth.


2019 ◽  
Vol 12 (4) ◽  
pp. 323-331 ◽  
Author(s):  
Amer T. Abed

AbstractA novel multiple-input and multiple-output (MIMO) fractal antenna excited by a coplanar waveguide was investigated in this study. A novel technique was used to improve the isolation of 20 dB between the dual radiating elements by inserting a strip line into the outer edges of the ground plane. A sunflower structure was used to configure the antenna in three steps. At each step, an additional sunflower structure was added with half the size of that used in the previous step to enhance the impedance bandwidth. The measured values of envelop correlation coefficient and total active reflection coefficient indicated that the proposed MIMO antenna has high-diversity performance between radiating elements. Wide dual operating bands of 2–2.9 and 5–10 GHz were obtained, which can support different wireless communications, such as 3G, LTE (2.6 GHz), WLAN (2.4 GHz/5 GHz), WiMAX (2.4 GHz/5GHz), ISM (2.4 GHz/5 GHz), 5G (5–6 GHz), and satellite communications (6–8 GHz). The MIMO fractal antenna with a small size achieved a maximum efficiency of 85% and a peak value gain of 6 dBi, low-channel capacity loss of 0.15–0.4 b/s/Hz, and high isolation between radiating elements is suitable for portable communication devices.


Sign in / Sign up

Export Citation Format

Share Document