isotope enrichment
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 34)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Daniel S. Grégoire ◽  
Sarah E. Janssen ◽  
Noémie C. Lavoie ◽  
Michael T. Tate ◽  
Alexandre J. Poulain

Mercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in food webs as monomethylmercury (MeHg). The production of MeHg is driven by anaerobic and Hg redox cycling pathways such as Hg reduction, which control the availability of Hg to methylators. Anaerobes play an important role in Hg reduction in methylation hotspots, yet their contributions remain underappreciated due to how challenging these pathways are to study in the absence of dedicated genetic targets and low levels of Hg 0 in anoxic environments. In this study we used Hg stable isotope fractionation to explore Hg reduction during anoxygenic photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. We show that cells preferentially reduce lighter Hg isotopes in both metabolisms leading to mass-dependent fractionation, but mass-independent fractionation commonly induced by UV-visible light is absent. Due to variability associated with replicated experiments, we could not discern whether dedicated physiological processes drive Hg reduction during photosynthesis and fermentation. However, we demonstrate that fractionation is affected by the interplay between pathways controlling Hg recruitment, accessibility, and availability alongside metabolic redox reactions. The combined contributions of these processes lead to isotopic enrichment during anoxygenic photosynthesis that is in between the values reported for anaerobic respiratory microbial Hg reduction and abiotic photoreduction. Isotope enrichment during fermentation is closer to what has been observed in aerobic bacteria that reduce Hg through dedicated detoxification pathways. Our work suggests that similar controls likely underpin diverse microbe-mediated Hg transformations that affect Hg’s fate in oxic and anoxic habitats. IMPORTANCE Anaerobic and photosynthetic bacteria that reduce mercury affect mercury delivery to microbes in methylation sites that drive bioaccumulation in food webs. Anaerobic mercury reduction pathways remain underappreciated in the current view of the global mercury cycle because they are challenging to study, bearing no dedicated genetic targets to establish physiological mechanisms. In this study we used stable isotopes to characterize the physiological processes that control mercury reduction during photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. The sensitivity of isotope analyses highlighted the subtle contribution of mercury uptake towards the isotope signature associated with anaerobic mercury reduction. When considered alongside the isotope signatures associated with microbial pathways for which genetic determinants have been identified, our findings underscore the narrow range of isotope enrichment that is characteristic of microbial mercury transformations. This suggests that there exist common atomic-level controls for biological mercury transformations across a broad range of geochemical conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thure E. Cerling ◽  
Stefano M. Bernasconi ◽  
Lino S. Hofstetter ◽  
Madalina Jaggi ◽  
Fabia Wyss ◽  
...  

Breath and diet samples were collected from 29 taxa of animals at the Zurich and Basel Zoos to characterize the carbon isotope enrichment between breath and diet. Diet samples were measured for δ13C and breath samples for CH4/CO2 ratios and for the respired component of δ13C using the Keeling plot approach. Different digestive physiologies included coprophagous and non-coprophagous hindgut fermenters, and non-ruminant and ruminant foregut fermenters. Isotope enrichments from diet to breath were 0.8 ± 0.9‰, 3.5 ± 0.8‰, 2.3 ± 0.4‰, and 4.1 ± 1.0‰, respectively. CH4/CO2 ratios were strongly correlated with isotope enrichments for both hindgut and foregut digestive strategies, although CH4 production was not the sole reason for isotope enrichment. Average CH4/CO2 ratios per taxon ranged over several orders of magnitude from 10–5 to 10–1. The isotope enrichment values for diet-breath can be used to further estimate the isotope enrichment from diet-enamel because Passey et al. (2005b) found a nearly constant isotope enrichment for breath-enamel for diverse mammalian taxa. The understanding of isotope enrichment factors from diet to breath and diet to enamel will have important applications in the field of animal physiology, and possibly also for wildlife ecology and paleontology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siang-Tai Syue ◽  
Chia-Hsuan Hsu ◽  
Keryea Soong

AbstractAn encrusting sponge, Terpios hoshinota, has the potential to infect all species of stony corals in shallow reefs and killing them. It caused a decline in coral coverage in two south-eastern islands of Taiwan. We proposed two hypotheses to examine how the sponges kill the corals, namely, light blocking and toxins, and tested by in-situ experiments. The results revealed that both light blocking, sponge toxins, and particularly the combination of both factors were effective at inducing tissue damage in stony corals over a short period. Second, to answer why the sponges killed the corals, we tested two hypotheses, namely, gaining nutrients versus gaining substrates for the sponge. By analyzing the stable isotopes 13C and 15N, as well as exploiting an enrichment experiment, it was possible to determine that only approximately 9.5% of the carbon and 16.9% of the nitrogen in the newly grown sponge tissues originated from the enriched corals underneath. The analysis also revealed that the control corals without isotope enrichment had higher δ13C and δ15N than the control sponges, which was an additional indication that T. hoshinota did not rely heavily on corals for nutrients. Therefore, our results support the hypothesis that the encrusting sponge did not kill corals for food or nutrients, but rather for the substrate.


2021 ◽  
Author(s):  
Margaret Barbour

<p>Leaf water becomes enriched in heavier isotopes during transpiration, with the degree of enrichment dependent on evaporative conditions. However, there has been considerable uncertainty regarding the importance of gradients in isotope enrichment within leaves (i.e. a Péclet effect).  That is, experimental studies show that evidence is approximately equally divided between the Péclet effect being important and being irrelevant for leaves. Our recent work demonstrates a link between the hydraulic design of leaves and the presence or otherwise of a Péclet effect.  That is, with prior knowledge of the pathways of water movement through leaves, the most appropriate modelling framework can be selected and uncertainty in interpretation and prediction reduced.</p><p>Reducing uncertainty is important because the H<sub>2</sub><sup>18</sup>O composition of leaves is passed on to oxygen atoms in O<sub>2</sub> and CO<sub>2</sub> so terrestrial plants strongly influence isotopic composition of the atmosphere. Of particular interest is the interpretation of the Dole effect, the oxygen isotopic imbalance between atmospheric O<sub>2</sub> and seawater.  The ice core record of the Dole effect has been interpreted as an integrative proxy for the global balance between terrestrial and oceanic productivity, or more recently as an indication of the migration of terrestrial productivity towards and away from the equator.  Both interpretations depend on highly uncertain leaf water isotope enrichment models. In light of the link between leaf hydraulic design and the Péclet effect, should we expect differences between species in the <sup>18</sup>O of O<sub>2</sub> produced by photosynthesis?  Do we need to reinterpret the Dole effect?</p>


Sign in / Sign up

Export Citation Format

Share Document