scholarly journals 60-year record of stem xylem anatomy and related hydraulic modification under increased summer drought in ring- and diffuse-porous temperate broad-leaved tree species

Trees ◽  
2021 ◽  
Author(s):  
Jorma Zimmermann ◽  
Roman M. Link ◽  
Markus Hauck ◽  
Christoph Leuschner ◽  
Bernhard Schuldt

Abstract Key message By combining dendrochronological time-series analysis with radial vessel features, we show that the reconstruction of hydraulic properties improves our understanding of tree species’ acclimation potential to climate change. Abstract The vascular architecture plays a crucial role in the productivity and drought tolerance of broadleaf trees, but it is not yet fully understood how the hydraulic system is acclimating to a warmer and drier climate. Because vessel features may record temporal and spatial variability in climatic signals of the past better than tree-ring width, we combined dendrochronological time-series analysis with the calculation of stem hydraulic properties derived from radial vessel features. We aimed to reconstruct the development and sensitivity of the hydraulic system over six decades and to identify climatic control of xylem anatomy for five co-existing broad-leaved diffuse- and ring-porous tree species (genera Acer, Fagus, Fraxinus and Quercus) across three sites covering a precipitation gradient from 548 to 793 mm. We observed a significant influence of the climatic water balance (CWB) on the vessel features of all species, but the time lag, magnitude and direction of the response was highly species-specific. All diffuse-porous species suffered a decline in vessel diameter in dry years, and increase in vessel density in dry years and the year following. However, F. sylvatica was the only species with a significant long-term change in anatomical traits and a significant reduction in potential hydraulic conductivity (Kp) after dry winters and in dry summers, accompanied with the largest long-term decline in tree-ring width and the largest growth reduction in and after years with a more negative CWB. In contrast, the comparison across the precipitation gradient did not reveal any significant vessel-climate relationships. Our results revealed considerable plasticity in the hydraulic system especially of F. sylvatica, but also evidence of the drought-sensitivity of this species in accordance with earlier dendroecological and physiological studies. We conclude that the long-term reconstruction of hydraulic properties can add substantially to the understanding of the acclimation potential of different tree species to climate change.

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 577
Author(s):  
Weiwei Lu ◽  
Xinxiao Yu ◽  
Guodong Jia

Long-term tree growth is significantly affected by climate change, which have become a global concern. Tree-ring width and isotopic information can show how trees respond to climate change on a long-term scale and reveal some phenomena of tree decline or death. In this study, we used isotopic techniques and investigated annual changes in carbon isotope composition and tree-ring width of Populus simonii Carr. in Zhangbei, as well as trends in tree-ring carbon discrimination (Δ13C) and iWUE in normal, mildly declining and severely declining trees, in order to make a retrospective analysis and further understand the process of tree decline. We found that there were significant differences (p < 0.01 **) in δ13C, Δ13C, ci and iWUE at different decline stages, meaning that the δ13C and iWUE could be new indicators of tree health. The iWUE of all groups increased significantly, while the growth rate of declined P. simonii was much higher than that of normal growth P. simonii. According to the analysis, there may be a threshold of iWUE for healthy trees, which once the threshold value is exceeded, it indicates that trees are resistant to adversity and their growth is under stress. Similarly, the changing trend of BAI supports our conclusion with its changes showed that tree growth became slower and slower as degradation progressed. iWUE inferred from tree-ring stable carbon isotope composition is a strong modulator of adaptation capacity in response to environmental stressors under climate change. Elevated annual temperatures and increased groundwater depth are all contributing to the decline of P. simonii in north China.


2015 ◽  
Vol 166 (6) ◽  
pp. 380-388 ◽  
Author(s):  
Pascale Weber ◽  
Caroline Heiri ◽  
Mathieu Lévesque ◽  
Tanja Sanders ◽  
Volodymyr Trotsiuk ◽  
...  

Growth potential and climate sensitivity of tree species in the ecogram for the colline and submontane zone In forestry practice a large amount of empirical knowledge exists about the productivity of individual tree species in relation to site properties. However, so far, only few scientific studies have investigated the influence of soil properties on the growth potential of various tree species along gradients of soil water as well as nutrient availability. Thus, there is a research gap to estimate the productivity and climate sensitivity of tree species under climate change, especially regarding productive sites and forest ad-mixtures in the lower elevations. Using what we call a «growth ecogram», we demonstrate species- and site-specific patterns of mean annual basal area increment and mean sensitivity of ring width (strength of year-to-year variation) for Fagus sylvatica, Quercus spp., Fraxinus excelsior, Picea abies, Abies alba and Pinus sylvestris, based on tree-ring data from 508 (co-)dominant trees on 27 locations. For beech, annual basal area increment ( average 1957–2006) was significantly correlated with tree height of the dominant sampling trees and proved itself as a possible alternative for assessing site quality. The fact that dominant trees of the different tree species showed partly similar growth potential within the same ecotype indicates comparable growth limitation by site conditions. Mean sensitivity of ring width – a measure of climate sensitivity – had decreased for oak and ash, while it had increased in pine. Beech showed diverging reactions with increasing sensitivity at productive sites (as measured by the C:N ratio of the topsoil), suggesting an increasing limitation by climate at these sites. Hence, we derive an important role of soil properties in the response of forests to climate change at lower elevations, which should be taken into account when estimating future forest productivity.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xavier Morin ◽  
Lorenz Fahse ◽  
Hervé Jactel ◽  
Michael Scherer-Lorenzen ◽  
Raúl García-Valdés ◽  
...  

IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 379-394 ◽  
Author(s):  
Xuemei Shao ◽  
Shuzhi Wang ◽  
Haifeng Zhu ◽  
Yan Xu ◽  
Eryuan Liang ◽  
...  

This article documents the development of a precisely dated and wellreplicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated successfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research.


ARCTIC ◽  
2017 ◽  
Vol 70 (4) ◽  
Author(s):  
Wayne L Strong

A tree-ring analysis of 764 western white spruce (Picea albertiana) in the Takhini Valley of southwest Yukon was conducted to assess short- and long-term variation in growth and local climate. The resulting chronology spanned the period from AD 1763 to 2013. A polynomial regression (R = 0.720, p < 0.001) indicated that the pre-1840 segment of the chronology had below-normal tree ring-width index (RWI) values (average 0.64, with modest variation), but the subsequent segment had greater variation and a steady increase in RWI values (average 0.89) until ~1920. After 1930, RWI values began to increase again (average 1.06) with 51% more variation than had previously occurred. Peak RWI values after 1930 were double those of the early 1800s. RWI values were uncorrelated with air temperature variables (except September minima), but weakly and positively correlated (r < 0.35) with precipitation variables. RWI values were moderately correlated with annual heat-moisture index values (r = −0.415, p < 0.001), although more strongly with RWI values less than 1.1 (R = −0.631, p < 0.001). Therefore, the RWI chronology was interpreted from an ecological moisture-balance perspective, with possible long-term temperature changes estimated from archival sources. The latter suggested a 2.1˚ – 3.1˚C rise since the early 1800s. Extreme RWI values and portions of the chronology were associated with known environmental events.


2020 ◽  
Vol 66 (4) ◽  
pp. 393-402
Author(s):  
Shuai Yuan ◽  
Yonghong Zheng ◽  
Yongdong Qi ◽  
Fanxi Kong ◽  
Dan Wang ◽  
...  

Abstract Soil temperature can affect tree growth and is one of the most important types of basic data for forest cultivation and management. To obtain a long-term time series of soil temperatures, we explored the utility of dendroclimatology in a subtropical area of China. In this study, the relations between tree-ring-width chronologies and climate factors were explored by correlation analysis. The results indicated that the limiting climatic factors for the radial growth of Huangshan pine were elevation-specific. Further investigation found that chronology at high elevations was significantly correlated with soil temperature. Then, we described a reconstruction of the soil temperatures of the Dabie Mountains area using the tree-ring width chronology from 1869 to 2015 and showed that the reconstruction explained 42.9 percent of the instrumental soil temperature variation in the common years. We found that the 1970s and 2000s were the coldest and warmest decades since 1884, respectively. The results of the reconstruction method for describing past soil temperatures can provide a reference for other subtropical forests. Furthermore, the results of our research also have a certain significance for guiding policymaking related to forest cultivation and management.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 473 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Jiang ◽  
Bagila ◽  
Ainur ◽  
...  

The divergence problem, which manifests as an unstable response relationship between tree-ring growth and climatic factors under the background of global warming, poses a challenge to both the traditional theory of dendroclimatology and the reliability of climatic reconstructions based on tree-ring data. Although Schrenk spruce, as the dominant tree species in the Tianshan Mountains, is frequently applied in the dendrochronological studies, the understanding of the divergence problem of this tree species is still limited. This study conducted correlation analysis between climatic factors and tree-ring width chronologies from 51 living and healthy specimens of Schrenk spruce at sites of high and low elevation in the Alatau Mountains to determine the stability of the response. The results revealed that the tree-ring width of the spruce specimens was correlated positively with precipitation and correlated negatively with temperature. Although the variations of the two tree-ring chronologies were similar, the radial growth of the spruce at the low elevation was found more sensitive to climatic factors. Furthermore, the sensitivity of tree growth to climate demonstrated an obvious increase after an abrupt change of climate under the background of the recent warming and wetting trend. Increased drought stress, calculated based on climatic data, was regarded as the main reason for this phenomenon. The results supply the gap of the stability of climatic response of tree growth in Central Asia to some extent.


IAWA Journal ◽  
2020 ◽  
Vol 41 (2) ◽  
pp. 202-218
Author(s):  
Jeong-Wook Seo ◽  
Dieter Eckstein ◽  
Allan Buras ◽  
Jörg Fromm ◽  
Martin Wilmking ◽  
...  

Abstract Although cell-anatomical variables are promising proxies reflecting seasonal as well as annual climate changes, their interdependencies are not yet fully understood. In the present study we assessed the changes in tree-ring width and various wood anatomical traits, including wall thickness, lumen diameter and tracheid diameter in the radial direction in saplings of Pinus sylvestris under six climatic conditions: 5°C warmer alone (ET) or combined with drought in June (ETJ) and in August (ETA) and CO2 enrichment alone (EC, 770 ppm) or combined with drought in June (ECJ) and in August (ECA). The experiments related to temperature conditions using 2-year saplings and CO2 conditions using 3-year saplings were completed in 2009 and 2010 in a greenhouse, respectively. Results showed that tree-ring width and tracheid diameter were not affected by any of the conditions applied, but the lumen diameter was larger and the wall thickness was thinner than those under control conditions. These reactions were verified under ETJ in the warming treatment and under all conditions under CO2 enrichment conditions. Our results indicated that drought counteracted the effects of elevated CO2 concentrations on wood anatomical properties, signifying complex interactions between the two major effects of climate change. Our comparison of wood parameters through experiments highlight the potential effect of climate change — increased drought stress due to higher temperatures and water shortage as well as elevated ambient CO2, on tracheid lumen diameter and wall thickness. Whereas the ring-width and tracheid diameter practically remained unaffected under the above-mentioned conditions.


Author(s):  
Stefan Friedrich ◽  
Torben Hilmers ◽  
Claudia Chreptun ◽  
Elizabeth Gosling ◽  
Isabelle Jarisch ◽  
...  

AbstractForest management faces growing uncertainty concerning environmental conditions and demand for ecosystem services. To help forest managers consider uncertainty, we applied a robust and multi-criteria approach to select the optimal composition of a forest enterprise from 12 stand types. In our simulation, the forest enterprise strives for either financial return or a multi-criteria forest management considering financial return, carbon storage and forest ecosystem stability. To quantify the influence of climate change on these decision criteria, we used the concept of analogous climate zones. Our results provide recommendations for long-term strategies for tree species selection in a Southeast German forest enterprise. The results show that considering both uncertainty and multifunctionality in forest management led to more diversified forest compositions. However, robust and multi-criteria optimisation required the forest enterprise to pay a premium in terms of lower income. Financial returns decreased when forest composition accounted for uncertainty or multiple objectives. We also found that adaptation measures could only partly financially compensate the effects of climate change. As the study is limited to two tree species, including additional tree species, variants of mixing proportions and further silvicultural strategies in the optimisation appears a promising avenue for future research.


2012 ◽  
Vol 32 (4) ◽  
pp. 1077-1084 ◽  
Author(s):  
尚建勋 SHANG Jianxun ◽  
时忠杰 SHI Zhongjie ◽  
高吉喜 GAO Jixi ◽  
徐丽宏 XU Lihong ◽  
吕世海 LÜ Shihai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document