scholarly journals Vaccine Efficacy after Rituximab Exposure: First Interim Analysis of Virtue Project on Behalf of West Midlands Research Consortium, UK

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 196-196
Author(s):  
Adrian M Shields ◽  
Srinivasan Venkatachalam ◽  
Shankara Paneesha ◽  
Mark Ford ◽  
Tom Sheeran ◽  
...  

Abstract Background: Anti-CD20 B cell depleting agents are amongst the most commonly used immunotherapeutics employed in the treatment of haematological malignancy and autoimmune diseases. By inducing peripheral B cell aplasia, anti-CD20 depleting agents are hypothesised to significantly impair serological responses to neoantigens, including the SARS-CoV-2 spike glycoprotein within SARS-CoV-2 vaccines. Seropositivity following SARS-CoV-2 is the strongest, measurable correlate of protection from severe COVID-19. Understanding the kinetics of B cell reconstitution and vaccine responsiveness following exposure to B cell depleting agents is essential to maximise vaccine efficacy in patients vulnerable to severe COVID-19. Methods: 80 patients with underlying haematological malignancy and 38 patients with underlying rheumatological disease previously treated with anti-CD20 B cell depleting agents were studied following their second dose of a SARS-CoV-2 vaccine (median time to sampling: 46.5d, IQR: 33.8-63.3). Lymphocyte subset (CD4, CD8, CD19, CD56/16) enumeration was performed using 6 colour flow cytometry (BD Trucount). Total anti-SARS-CoV-2 spike glycoprotein antibodies were measured by enzyme-linked immunosorbent assay (The Binding Site, Human Anti-IgG/A/M SARS-CoV-2-ELISA). The relationship between immune reconstitution following B cell depletion and vaccine responsiveness was explored. Results: In the haematology cohort (median age 70y, IQR 60.3-76.0, 62.5% male), overall seropositivity following vaccination was 60.0%. Individuals on active chemotherapy had significantly lower seroprevalence than those vaccinated following the completion of chemotherapy (22.7% vs 74.1%, p<0.0001). In the rheumatology cohort (median age 65y, IQR 58.3-70.8, 39.9% male), overall seropositivity was 69.4%. In both cohorts, vaccine non-responders had significantly smaller populations of peripheral CD19+ B cells (haematology: 0.20 vs 0.02 x10 9/L, p=0.004, rheumatology: 0.07 vs 0.01 x10 9/L, p=0.03). The magnitude of the antibody response following vaccination did not differ between recipients of Tozinameran and Vaxzeveria in either cohort. Vaccine responsiveness was lower in the first 6 months following B cell depletion therapy; 42.9% in the haematology cohort and 33.3% in the rheumatology cohort, increasing to 100% and 75% respectively in individuals receiving their second dose 6-12 months following B cell depletion (Figure 1). B cell reconstitution in the 7-12 month window following B cell depletion was faster in haematology compared to rheumatology patients (77.8% v 22.2% achieving normal B cell count, p=0.005) and associated with improved vaccine responsiveness. However, persistent immunodeficiency occurred in some haematology patients following completion of treatment: 25% of patients who had completed therapy at least 36 months previously failed to respond to vaccination. In this cohort of vaccine non-responders, 83.3% of individuals had B cell numbers within the normal range. These patients had all previously been treated for follicular lymphoma suggesting a specific mechanism for long-range secondary immunodeficiency in these patients. Conclusions: Serological responsiveness to SARS-CoV-2 vaccines is poor during active chemotherapy for haematological malignancy and in the first 6 months following B cell depletion, regardless of underlying disease. Vaccine responsiveness significantly improves in the 7-12 month window following B cell depletion. Compared to haematology patients, B cell reconstitution is slower in rheumatology patients and associated with reduced vaccine responsiveness, possibly due to the use of additional concurrent disease-modifying anti-rheumatic therapies. Furthermore, long-term secondary immunodeficiency occurs in a minority of haematology patients. To maximise the efficacy from SARS-CoV-2 booster vaccination and optimal utilisation of available vaccine doses, immunisations should be delivered at least 6 months following the administration of anti-CD20 depleting drugs. Figure 1: Kinetics of return of vaccine responsiveness following B cell depletion in haematology and rheumatology patients. Figure 1 Figure 1. Disclosures Paneesha: Roche: Honoraria; Janssen: Honoraria; Gilead: Honoraria; Bristol Myers Squibb: Honoraria; AbbVie: Honoraria; Celgene: Honoraria. Drayson: Abingdon Health: Current holder of individual stocks in a privately-held company.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asuka Tanaka ◽  
Kentaro Ide ◽  
Yuka Tanaka ◽  
Masahiro Ohira ◽  
Hiroyuki Tahara ◽  
...  

AbstractPretransplant desensitization with rituximab has been applied to preformed donor-specific anti-human leukocyte antigen antibody (DSA)-positive recipients for elimination of preformed DSA. We investigated the impact of pretransplant desensitization with rituximab on anti-donor T cell responses in DSA-positive transplant recipients. To monitor the patients’ immune status, mixed lymphocyte reaction (MLR) assays were performed before and after desensitization with rituximab. Two weeks after rituximab administration, the stimulation index (SI) of anti-donor CD4+ T cells was significantly higher in the DSA-positive recipients than in the DSA-negative recipients. To investigate the mechanisms of anti-donor hyper responses of CD4+ T cells after B cell depletion, highly sensitized mice models were injected with anti-CD20 mAb to eliminate B cells. Consistent with clinical observations, the SI values of anti-donor CD4+ T cells were significantly increased after anti-CD20 mAb injection in the sensitized mice models. Adding B cells isolated from untreated sensitized mice to MLR significantly inhibited the enhancement of anti-donor CD4+ T cell response. The depletion of the CD5+ B cell subset, which exclusively included IL-10-positive cells, from the additive B cells abrogated such inhibitory effects. These findings demonstrate that IL-10+ CD5+ B cells suppress the excessive response of anti-donor CD4+ T cells responses in sensitized recipients.


2015 ◽  
Vol 16 (2) ◽  
pp. 672-678 ◽  
Author(s):  
J. Marino ◽  
J. T. Paster ◽  
A. Trowell ◽  
L. Maxwell ◽  
K. H. Briggs ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4977-4977
Author(s):  
Jennifer Wayne ◽  
Kristen N. Ganjoo ◽  
Andres Forero ◽  
Brad Pohlman ◽  
Sven de Vos ◽  
...  

Abstract Abstract 4977 Sustained Depletion of B-Cells by a Humanized, Fc-Engineered Anti-CD20 Antibody, AME-133v, in Patients with Relapsed Follicular Lymphoma J Wayne,1 K Ganjoo,2 A Forero,3 B Pohlman,4 S de Vos,5 S Carpenter,6 J Wooldridge,6 S Marulappa,1 V Jain11Mentrik Biotech, LLC, Dallas, TX, 2Standford University Medical Center, Stanford, CA, 3Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL,4Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, 5David Geffen School of Medicine at University of California, Los Angeles, CA, 6Eli Lilly and Company, Indianapolis, Indiana Introduction AME-133v is a humanized anti-CD20 monoclonal antibody that has a 13 to 20-fold increase in binding affinity and approximately 6-fold more potent effector function in antibody-dependent cell-mediated cytotoxicity (ADCC) compared to rituximab. Phase I/II clinical trials of AME-133v in patients with relapsed follicular lymphoma have demonstrated an overall response rate of greater than 30% with a complete response rate of 16%. The extent and duration of depletion of CD19+ B-cells in peripheral blood was used as a surrogate of therapeutic levels of AME-133v. Analysis from the Phase I/II clinical trials is presented in this report. Methods CD-19 positive B-cells in peripheral blood were measured in 77 patients with relapsed follicular lymphoma enrolled in two phase I/II clinical trials of AME-133v. These studies assessed five different doses of AME-133v (from 2 mg/m2 to 375 mg/m2). AME-133v was administered intravenously four times at weekly intervals in both trials. Blood samples were taken at multiple time points throughout the trial and a central lab measured levels of circulating CD19+ B-cells using fluorescence-activated cell sorting (FACS). Results Excluding the four patients enrolled in the 2 mg/m2 dose cohort, depletion of peripheral B-cells occurred in all patients and was sustained over time (Table 1). Baseline levels of B-cell counts ranged from 4 × 103 to 1,187 × 103 cells/μL, with an average of 102 × 103 cells/μL and a median of 60 × 103 cells/μL. Within 24 hours of the first infusion, all patients had depletion of circulating B-cells; ninety-six percent of patients had less than 10 × 103 cells/μL and two patients had less than 20 × 103 cells/μL. Interestingly, AME-133v was effective at depleting B-cells even at doses as low as 7.5 mg/m2. To assess sustainability of B-cell depletion after four doses of AME-133v, CD19+ cell counts were evaluated at nine weeks after the fourth infusion and every three months thereafter. Complete depletion of CD19+ lymphocytes was sustained for nine weeks. At five months after the last infusion of AME-133v, nearly two-thirds of patients had no detectable circulating B-cells. Sustained B-cell depletion lasted for at least eight months following the last infusion in 63% of patients. Table 1. B-cell counts for all patients in 7.5, 30, 100 and 375 mg/m2 cohorts. Percentages are cumulative Time Point Cell Count (x 103 cells/μL) 0 < 1 2 to 10 11 to 30 31 to 50 < 100 Day 1 (24 hours after last infusion) 62 % 66 % 96 % 100 % 100% 100% Day 7 (day of infusion 2) 75% 80% 95% 97% 97% 98% Day 28 (1 week after last infusion) 78 % 87% 95% 98% 98% 100% Day 84 (9 weeks after last infusion) 78% 87% 91% 96% 96% 98% Day 174 (5 months after last infusion) 60% 60% 70% 86% 93% 100% Day 264 (8 months after last infusion) 26% 26% 41% 63% 81% 89% Day 354 (11 months after last infusion) 0% 0% 15% 40% 55% 80% DEMOGRAPHIC CHARACTERISTICS (EVALUABLE POPULATION) “\f C \l 1 Demographic and Disease Characteristics on evaluable population (N=30) Conclusion The rapid and sustained effect of AME-133v on B-cell depletion, even in low-affinity FcγRIIIa patients, indicates a potentially relevant biological activity of the antibody in treating B-cell non-Hodgkin lymphoma. Notably, this depletion occurred even at very low doses of drug administration and persisted over time. This may be related to its higher affinity for CD20, increased ADCC, or both. The sustained B-cell depletion may result in prolonged clinical response and might mitigate the need for maintenance therapy. A randomized trial is being planned to compare efficacy of AME-133v vs. rituximab. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 8032-8032 ◽  
Author(s):  
F. Morschhauser ◽  
J. P. Leonard ◽  
L. Fayad ◽  
B. Coiffier ◽  
M. Petillon ◽  
...  

8032 Background: An open-label, multicenter study has shown that the humanized anti-CD20 antibody, IMMU-106 (hA20), which has framework regions of epratuzumab, has a good safety and efficacy profile in NHL pts when administered once-weekly × 4 at different doses. The trial is now focused on confirming the efficacy of lower doses (80–120 mg/m2/wk × 4). Methods: A total of 68 pts (35 male, 33 female; age 34–84) received hA20 at 750 (N=3), 375 (N=27), 200 (N=11), 120 (N=21), or 80 mg/m2 (N=6). They had follicular (FL, N=47) or other (N=21) B-cell NHL, were predominantly stage III/IV (N=47) at study entry, and had received 1–8 prior treatments (median, 2), including 1 (N=40) or more (N=21) rituximab regimens (without progression within 6 months). Results: Sixty- six pts completed all 4 infusions; 1 pt progressed during treatment and withdrew, while another pt with hives and chills after prior rituximab discontinued treatment after a similar episode at 1st infusion. hA20 was generally well tolerated, with shorter infusion times (typically 2 h initially and 1 h subsequently) at lower doses. Drug-related adverse events were transient, Grade 1–2, most occurring only at 1st infusion, and there was no evidence of HAHA in 54 pts now evaluated. Mean antibody serum levels increased with dose and infusions; serum clearance at 375 mg/m2 appears similar to rituximab. Currently, 48 pts with at least 12 wks follow-up were evaluated by Cheson criteria: 32 FL pts had 15 (47%) OR's with 7 (22%) CR/CRu's, even after 2–4 prior rituximab-regimens, and 17 non-FL pts had 6 (38%) OR's, with 1 CRu in a marginal zone NHL pt. At a median follow-up of 11 mo., 9/21 pts with ORs are continuing responses, including 4 long-lived responses (15–20 mo). The evaluated pts include 17 pts at 120 mg/m2 who had 5 (29%) ORs with 3 (17%) CR/CRu's. Responses at 80 mg/m2 remain to be evaluated, but B-cell depletion occurs after the 1st infusion even at this low dose. Conclusions: hA20 appears well-tolerated, with no evidence of significant adverse events other than minor infusion reactions, even at short infusion times. B-cell depletion and responses have occurred at all doses evaluated, with no clear-cut evidence of a dose-response. As such, the study is continuing to confirm the efficacy of lower doses. No significant financial relationships to disclose.


Neurology ◽  
2012 ◽  
Vol 78 (Meeting Abstracts 1) ◽  
pp. P04.124-P04.124
Author(s):  
D. Hertzenberg ◽  
K. Lehmann-Horn ◽  
P. LaLive ◽  
C. Bernard ◽  
S. Zamvil ◽  
...  

2016 ◽  
Vol 16 (11) ◽  
pp. 3139-3149 ◽  
Author(s):  
L. H. Laws ◽  
C. E. Parker ◽  
G. Cherala ◽  
Y. Koguchi ◽  
A. Waisman ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 13-13
Author(s):  
Albert Kolomansky ◽  
Irit Kay ◽  
Nathalie Ben-Califa ◽  
Anton Gorodov ◽  
Zamzam Awida ◽  
...  

Background and aims: Immunotherapy with anti-CD20-specific antibodies (e.g. rituximab), has become the standard of care for B cell lymphoproliferative disorders and many autoimmune diseases. Despite previously demonstrated role for B cells in bone metabolism, the effect of anti-CD20-mediated B cell depletion on bone mass in human patients has not been thoroughly studied. For example, in rheumatological patients the effect of rituximab on bone mass yielded conflicting results, while in lymphoma patients it has not yet been described. Here, we describe the effect of treatment with anti-CD20-specific antibodies on bone mass in a cohort of patients with follicular lymphoma and propose a plausible mechanism using murine model. Methods: To assess the effect of rituximab on bone mass in lymphoma patients, we retrospectively studied the bone mass in patients with follicular lymphoma (FL) during the maintenance phase of chemoimunotherapy, i.e. when rituximab is administered as monotherapy. FL patients on no maintenance (historical controls) or patients with marginal zone lymphoma were include as a control group. Cross-sectional X-ray imaging (CT/PET-CT), performed at the completion of the induction phase and 6-12 months thereafter, were used to serially assess bone density. Wild-type female C57BL/6J mice and mouse anti-mouse CD20 antibody (Genentech) were used for the animal experimental system. Murine bone structure was assessed by the microCT method. Immunophenotyping of the bone marrow (BM), spleen and peripheral blood cells was performed. ELISA and "real-time" quantitative PCR were used to measure the levels of key mediators of bone remodeling, e.g. RANKL, OPG and TNFα. Standard osteoclastogenic assay was used to assesses the osteoclastogenic potential of BM cells. Results: Rituximab treatment prevented the decline in bone mass observed in patients who did not receive active maintenance therapy, both in the lumbar spine (-2.6% vs -8%) and femoral head (-0.5% vs -5.1%) (n=12 patients in each group, p&lt;0.05 for the comparisons in the control group, calculated by Wilcoxon matched-pairs signed rank test). Anti-CD20-mediated B cell depletion in mice led to a significant increase in bone mass as reflected by: 7.7% increase in bone mineral density (whole femur) and ~5% increase in cortical as well as trabecular tissue mineral density (n=17-21 mice in each group, p&lt;0.05). Mechanistically, treating mice with anti-CD20 antibodies significantly decreased the osteoclastogenic signals, including RANKL and TNFα, along with a substantial downregulation of RANK (the RANKL receptor). This correlated with nearly a 50% reduction in osteoclastogenic potential of BM cells derived from B-cell-depleted animals (p&lt;0.05). The decline in the RANKL output was observed both at the bone level (≈25% relative reduction in the mRNA levels), as measured in the whole bone and BM cells, as well as in the serum (18% relative reduction) of the anti-CD20-treated mice as compared to diluent-treated controls (p&lt;0.05 for all comparisons). No significant changes in the OPG levels were noted. Conclusions: While many lymphoma patients may suffer from bone loss due to advanced age and glucocorticoid administration, our data suggest additional favorable effect of anti-CD20 treatment in bone preservation. Importantly, our murine studies indicate that B cell depletion has a direct effect on bone remodeling, primarily by reducing the osteoclastogenic signals, thus potentially diminishing bone resorption. This novel unrecognized effect should be taken into consideration when maintenance treatment is considered. MM and DN contributed equally to this work. Figure Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 5 (4) ◽  
pp. e463 ◽  
Author(s):  
Erik Ellwardt ◽  
Lea Ellwardt ◽  
Stefan Bittner ◽  
Frauke Zipp

ObjectiveTo determine the factors that influence B-cell repopulation after B-cell depletion therapy in neurologic patients and derive recommendations for monitoring and dosing of patients.MethodsIn this study, we determined the association of body surface area (BSA; calculated by body weight and height with the Dubois formula), sex, pretreatment therapy, age, CSF data, and white blood cell counts with the risk and timing of B-cell repopulation, defined as 1% CD19+ cells (of total lymphocytes), following 87 B cell–depleting anti-CD20 treatment cycles of 45 neurologic patients (28 women; mean age ± SD, 44.5 ± 15.0 years).ResultsPatients with a larger BSA had a higher probability to reach 1% CD19+ cells than those with a smaller BSA (p < 0.05) following B-cell depletion therapy, although those patients had received BSA-adapted doses of rituximab (375 mg/m2). Sex, pretreatment, age, CSF data, or absolute lymphocyte and leukocyte counts during treatment did not significantly influence CD19+ B-cell recovery in the fully adjusted models. Intraindividual B-cell recovery in patients with several treatment cycles did not consistently change over time.ConclusionsB-cell repopulation after depletion therapy displays both high inter- and intra-individual variance. Our data indicate that a larger BSA is associated with faster repopulation of B cells, even when treatment is adapted to the BSA. A reason is the routinely used Dubois formula, underestimating a large BSA. In these patients, there is a need for a higher therapy dose. Because B-cell count–dependent therapy regimes are considered to reduce adverse events, B-cell monitoring will stay highly relevant. Patients' BSA should thus be determined using the Mosteller formula, and close monitoring should be done to avoid resurgent B cells and disease activity.


Sign in / Sign up

Export Citation Format

Share Document