gluino mass
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 2)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Zhuang Li ◽  
Guo-Li Liu ◽  
Fei Wang ◽  
Jin Min Yang ◽  
Yang Zhang

Abstract Gluino-SUGRA ($$ \overset{\sim }{g} $$ g ~ SUGRA), which is an economical extension of the predictive mSUGRA, adopts much heavier gluino mass parameter than other gauginos mass parameters and universal scalar mass parameter at the unification scale. It can elegantly reconcile the experimental results on the Higgs boson mass, the muon g − 2, the null results in search for supersymmetry at the LHC and the results from B-physics. In this work, we propose several new ways to generate large gaugino hierarchy (i.e. M3 » M1, M2) for $$ \overset{\sim }{g} $$ g ~ SUGRA model building and then discuss in detail the implications of the new muon g − 2 results with the updated LHC constraints on such $$ \overset{\sim }{g} $$ g ~ SUGRA scenarios. We obtain the following observations: (i) for the most interesting M1 = M2 case at the GUT scale with a viable bino-like dark matter, the $$ \overset{\sim }{g} $$ g ~ SUGRA can explain the muon g − 2 anomaly at 1σ level and be consistent with the updated LHC constraints for 6 ≤ M3/M1 ≤ 9 at the GUT scale; (ii) For M1 : M2 = 5 : 1 at the GUT scale with wino-like dark matter, the $$ \overset{\sim }{g} $$ g ~ SUGRA model can explain the muon g − 2 anomaly at 2σ level and be consistent with the updated LHC constraints for 3 ≤ M3/M1 ≤ 3.2 at the GUT scale; (iii) For M1 : M2 = 3 : 2 at the GUT scale with mixed bino-wino dark matter, the $$ \overset{\sim }{g} $$ g ~ SUGRA model can explain the muon g − 2 anomaly at 1σ level and be consistent with the updated LHC constraints for 6.9 ≤ M3/M1 ≤ 7.5 at the GUT scale. Although the choice of heavy gluino will always increase the FT involved, some of the 1σ/2σ survived points of $$ \Delta {a}_{\mu}^{\mathrm{combine}} $$ ∆ a μ combine can still allow low EWFT of order several hundreds and be fairly natural. Constraints from (dimension-five operator induced) proton decay are also discussed.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract Results of a search for new particles decaying into eight or more jets and moderate missing transverse momentum are presented. The analysis uses 139 fb−1 of proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The selection rejects events containing isolated electrons or muons, and makes requirements according to the number of b-tagged jets and the scalar sum of masses of large-radius jets. The search extends previous analyses both in using a larger dataset and by employing improved jet and missing transverse momentum reconstruction methods which more cleanly separate signal from background processes. No evidence for physics beyond the Standard Model is found. The results are interpreted in the context of supersymmetry-inspired simplified models, significantly extending the limits on the gluino mass in those models. In particular, limits on the gluino mass are set at 2 TeV when the lightest neutralino is nearly massless in a model assuming a two-step cascade decay via the lightest chargino and second-lightest neutralino.


2018 ◽  
Vol 175 ◽  
pp. 08003 ◽  
Author(s):  
Sajid Ali ◽  
Georg Bergner ◽  
Henning Gerber ◽  
Pietro Giudice ◽  
István Montvay ◽  
...  

The introduction of a space-time lattice as a regulator of field theories breaks symmetries associated with continuous space-time, i.e. Poincaré invariance and supersymmetry. A non-zero gluino mass in the supersymmetric Yang-Mills theory causes an additional soft breaking of supersymmetry. We employ the lattice form of SUSY Ward identities, imposing that their continuum form would be recovered when removing the lattice regulator, to obtain the critical hopping parameter where broken symmetries can be recovered.


2016 ◽  
Vol 760 ◽  
pp. 681-688 ◽  
Author(s):  
Takeo Moroi ◽  
Tsutomu T. Yanagida ◽  
Norimi Yokozaki

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
W. Abdallah ◽  
S. Khalil

The constraints imposed on the Minimal Supersymmetric Standard Model (MSSM) parameter space by the Large Hadron Collider (LHC) Higgs mass limit and gluino mass lower bound are revisited. We also analyze the thermal relic abundance of lightest neutralino, which is the Lightest Supersymmetric Particle (LSP). We show that the combined LHC and relic abundance constraints rule out most of the MSSM parameter space except a very narrow region with very largetan⁡β  (~50). Within this region, we emphasize that the spin-independent scattering cross section of the LSP with a proton is less than the latest Large Underground Xenon (LUX) limit by at least two orders of magnitude. Finally, we argue that nonthermal Dark Matter (DM) scenario may relax the constraints imposed on the MSSM parameter space. Namely, the following regions are obtained:m0≃O(4) TeV andm1/2≃600 GeV for lowtan⁡β  (~10);m0~m1/2≃O(1) TeV orm0≃O(4) TeV andm1/2≃700 GeV for largetan⁡β  (~50).


2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Arindam Chatterjee ◽  
Arghya Choudhury ◽  
Amitava Datta ◽  
Biswarup Mukhopadhyaya
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Philip Diessner ◽  
Jan Kalinowski ◽  
Wojciech Kotlarski ◽  
Dominik Stöckinger

We present the impact of two-loop corrections on the mass of the lightest Higgs boson in the minimalR-symmetric supersymmetric standard model (MRSSM). These shift the Higgs boson mass up by typically 5 GeV or more. The dominant corrections arise from strong interactions, and from the gluon and itsN=2superpartners, the sgluon and Dirac gluino, and these corrections further increase with large Dirac gluino mass. The two-loop contributions governed purely by Yukawa couplings and the MRSSMλ,Λparameters are smaller. We also update our earlier analysis which showed that the MRSSM can accommodate the measured Higgs andWboson masses. Including the two-loop corrections increases the parameter space where the theory prediction agrees with the measurement.


Author(s):  
K. Kadota ◽  
G. Kane ◽  
J. Kersten ◽  
L. Velasco-Sevilla
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document