scholarly journals Early effects of crop tree management on undergrowth plant diversity and soil physicochemical properties in a Pinus massoniana plantation

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11852
Author(s):  
Qian Lyu ◽  
Yi Shen ◽  
Xianwei Li ◽  
Gang Chen ◽  
Dehui Li ◽  
...  

Background Soil and understory vegetation are vital components of forest ecosystems. Identifying the interaction of plantation management to vegetation and soil is crucial for developing sustainable plantation ecosystem management strategies. As one of the main measures of close-to-nature management of forest plantation, few studies have paid attention to the effect of crop tree management on the soil properties and understory vegetation. Methods A 36-year-old Pinus massoniana plantation in Huaying city, Sichuan Province was taken as the research object to analyse the changes in undergrowth plant diversity and soil physicochemical properties under three different crop tree densities (100, 150, and 200 N/ha). Results Our results showed that the contents of available phosphorus, organic matter and hydrolysable nitrogen in the topsoil increased significantly after crop tree management, while content of available potassium decreased. The composition of shrub and herb layer was richer, and the dominant species were obviously replaced after crop tree management. The Shannon–Wiener index and Richness index of shrub layer, and the diversity of herb layer increased significantly after crop tree management. Herb layer diversity indexes and Richness index of shrub layer were closely related to soil organic matter, available phosphorus, hydrolysable nitrogen, available potassium, soil moisture and bulk density. As the main limiting factors for plant growth, nitrogen, phosphorus and potassium were closely related to plant diversity and to the distribution of the dominant species. At the initial stage of crop tree management, each treatment significantly improved the soil physicochemical properties and plant diversity of Pinus massoniana plantation, and the comprehensive evaluation was 200 N/ha >100 N/ha >150 N/ha >CK. Compared with other treatments, 200 N/ha had the best effect on improving the undergrowth environment of the Pinus massoniana plantation in the initial stage of crop tree management.

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 376
Author(s):  
Jinwen Pan ◽  
Qiqiang Guo ◽  
Huie Li ◽  
Siqiong Luo ◽  
Yaqin Zhang ◽  
...  

Pinus massoniana is the major afforestation and vegetation restoration tree in southern China, and it plays an important role in the sustainable development of plantations. However, long-term single planting of P. massoniana has resulted in the decline of soil quality and forest productivity, and a soil fertility assessment is urgently needed. We selected P. massoniana plantations of four age stages for plot investigation and sampling to determine the soil physicochemical properties, microbial diversity and composition, and enzyme activities at different soil depths. The results showed that soil total phosphorus (TP) and available phosphorus (AP) decreased with the increase of age, especially low C/N ratio and high C/P and N/P ratio in the 30-year and 36-year stands, leading to P limitation. Meanwhile, the bacterial Shannon index also decreased with the increase of age and was positively correlated with AP, NO3−-N, and pH. However, the fungal Shannon index decreased first and then increased with the increase of age; soil acid phosphatase (S-ACP) and urease activities showed a similar trend. Correlation analysis demonstrated that the increase of total organic carbon (TOC) and total nitrogen (TN) promoted the increase of fungal Shannon index, which was beneficial to the secretion of more enzymes. We found that soil physicochemical properties, microbial diversity, and enzyme activity decreased simultaneously when soil depths increased. Moreover, Acidobacteria and Basidiomycota were the most abundant bacterial and fungal communities, respectively, followed by Proteobacteria and Actinobacteria for bacteria and Ascomycota for fungi, and these microbial taxa were significantly affected by soil water content (SWC), TOC, AP, and C/P. In conclusion, this work reveals the potential correlation among soil physicochemical properties, microbial diversity and composition, and enzyme activities, and revealed potential correlations among them which will help to improve understanding of soil conditions and provide a reference for rational management of soil resources.


2016 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Nahusenay Abate ◽  
Kibebew Kibret

The study was conducted to investigate the effects of land use, depth and topography on soil physicochemical properties at the Wadla Delanta Massif, northcentral Ethiopia. Four land uses (natural forest, shrub, grazing and cultivated land), three soil depths (0-20, 20-40, 40-60 cm) and three topographic positions (upper, middle and lower) in three replications were considered for this study. A total of 108 composite samples were collected for laboratory analysis. The results show that particle size distribution was affected by the main effects of land use and soil depth; bulk and particle densities, total porosity, organic matter and total nitrogen contents, C:N ratio and available phosphorus were significantly affected by the interaction of land use by soil depth only, whereas, soil pH, electrical conductivity, exchangeable bases, cation exchange capacity, percent base saturation and extractable micronutrients were affected by the interaction effects of the three factors. Highest clay and bulk density were recorded at the bottom layer of the cultivated land soils, while the utmost porosity, organic matter and nitrogen contents, and available phosphorus were recorded at the surface layers of the natural forest land soils. Highest pH was at the bottom layer of the cultivated land at the three topographic positions. Highest exchangeable bases and cation exchange capacity were observed in the bottom layers of soils under the four land use types at the lower topographic position, whilst extractable micronutrients were recorded at the surface layers of the forest land soils at the upper topographic position. In general, most of the measured soil properties were measured better in forest than in other land use soils and the lower topographic positions than the upper and middle ones. Interaction of land use with topography showed negative effects especially on cultivated and grazing land soils in all topographic positions. Therefore, integrated soil fertility management and soil conservation measures are required in all topographic positions to maintain soil physicochemical properties.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Muhammad Naeem ◽  
Noman Mehboob ◽  
Muhammad Farooq ◽  
Shahid Farooq ◽  
Shahid Hussain ◽  
...  

This two-year study observed the influence of various barley-based cropping systems on soil physicochemical properties, allometric traits and biomass production of barley sown under different tillage systems. Barley was cultivated in different cropping systems (CS), i.e., fallow-barley (fallow-B), maize-barley (maize-B), cotton-barley (cotton-B), mungbean-barley (mungbean-B) and sorghum-barley (sorghum-B) under zero tillage (ZT), minimum tillage (MT), strip tillage (ST), conventional tillage (CT) and bed-sowing (BS). Interaction between different CS and tillage systems (TS) positively influenced soil bulk density (BD), total porosity, available phosphorus (P), ammonical and nitrate nitrogen (NH4-N and NO3-N), available potassium (K), allometric traits and biomass production of barley. The highest soil BD along with lower total porosity were noted in ZT leading to lesser leaf area index (LAI), leaf area duration (LAD), specific leaf area (SLA), crop growth rate (CGR) and net assimilation rate (NAR) of barley. Nonetheless, bed-sown barley produced the highest biomass due to better crop allometry and soil physical conditions. The highest postharvest soil available P, NH4-N, NO3-N, and K were recorded for zero-tilled barley, while BS followed by CT recorded the lowest nutrient contents. Barley in mungbean-B CS with BS produced the highest biomass, while the lowest biomass production was recorded for barely sown in fallow-B cropping system with ZT. In conclusion, barley sown after mungbean (mungbean-B cropping system) with BS seems a pragmatic choice for improving soil fertility and subsequently soil health.


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
吕刚 LÜ Gang ◽  
王婷 WANG Ting ◽  
李叶鑫 LI Yexin ◽  
魏忠平 WEI Zhongping ◽  
王凯 WANG Kai

2013 ◽  
Vol 807-809 ◽  
pp. 843-847
Author(s):  
Xu Dong Zhao ◽  
De Gang Zhang ◽  
Li Na Shi ◽  
Yong Shun Yang

The depth variations of soil physicochemical properties in the degraded native grasslands and the artificially restored grasslands were studied in the Three-river headwater areas of Qinghai-Tibetan plateau, China. The results showed: (1) With the increase of the gradient of restoration years, soil water content, total chemical properties, total potassium, phosphorus, available phosphorus and potassium were increased thereafter in the artificial grasslands. (2) With the increase of grassland degradation gradient, soil water content was gradually reduced, and the total N, K, the organic matter didnt gradually reduced also. (3) Both restoration years and degradation degree didnt influence the nutrient distribution in soil. (4) The organic matter, total N and K of degraded grassland were increased by artificial grassland construction. Therefore, artificial grassland construction canbe used as an effective measure of ecological projects in the Three-river headwater area.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Dong Dai ◽  
Ashfaq Ali ◽  
Xin Huang ◽  
Mingjun Teng ◽  
Changguang Wu ◽  
...  

Clearing of understory plants is a common management method in plantation forests, but its long-term impact on soil properties and understory plant diversity is still poorly understood. In order to uncover the potential relationship between understory diversity and soil properties, we categorized understory plants into herbs and shrubs, and took soil depth into consideration. We measured the soil variables and investigated the understory plant diversity in four stand age-classes (9-year-old for young, 18-year-old for intermediate, 28-year-old for near-mature, and 48-year-old for mature) in a Pinus massoniana plantation. We aimed to examine how the diversity of herbs and shrubs changed with stand succession and to determine which of the three soil depths (0–10 cm, 10–20 cm, 20–40 cm) had the strongest explanation for the understory plant diversity. Furthermore, structural equation modeling (SEM) was performed to assess the direct and indirect effect of understory clearing and stand age on understory diversity. We found that understory clearing influenced the trend of diversity of herbs and shrubs with stand age, and understory diversity showed a strong correlation with soil physical properties in all three soil layers. The soil properties in the 10–20 cm soil layer related with the diversity of herbs and shrubs most, while the 20–40 cm soil layer properties related with them the least. Understory clearing reduced soil available phosphorus (AP). Understory clearing and stand age were found to benefit understory plant diversity directly and decreased the understory diversity indirectly via AP. Consequently, to improve our understanding of the impact of understory clearing and stand age on biodiversity, we should take into account its direct and indirect effects.


2019 ◽  
Vol 7 (9) ◽  
pp. 284 ◽  
Author(s):  
Shao ◽  
Lai ◽  
Jiang ◽  
Wang ◽  
Hong ◽  
...  

Chinese Cordyceps is a well-known medicinal larva-fungus symbiote distributed in the Qinghai-Tibetan Plateau and adjacent areas. Previous studies have involved its artificial cultivation but commercial cultivation is difficult to perform because the crucial factors triggering the occurrence of Chinese Cordyceps are not quite clear. The occurrence of Chinese Cordyceps is greatly affected by the soil environment, including the soil’s physicochemical and microecological properties. In this study, the effects of these soil properties on the occurrence of Chinese Cordyceps were investigated. The results show that the physicochemical properties, including easily oxidizable organic carbon (EOC), soil organic carbon (SOC), humic acid carbon (HAC), humin carbon (HMC), and pH, might be negatively related to the occurrence of Chinese Cordyceps, and soil water content (SWC) might be positively related. Several soil physicochemical parameters (pH, SOC, HMC, HAC, available potassium (APO), available phosphorus (APH), microbial biomass carbon (MBC), and the ratio of NH4+ to NO3- (NH4+/NO3-)) and microbial properties interact and mix together, which might affect the occurrence of Chinese Cordyceps. Soil microbial community structure was also a possible factor, and a low level of bacterial and fungal diversity was suitable for the occurrence of Chinese Cordyceps. The intra-kingdom network revealed that a closer correlation of the bacterial community might help the occurrence of Chinese Cordyceps, while a closer correlation of the fungal community might suppress it. The inter-kingdom network revealed that the occurrence rate of Chinese Cordyceps might be negatively correlated with the stability of the correlation state of the soil habitat. In conclusion, this study shows that soil physicochemical properties and microbial communities could be greatly related with the occurrence of Chinese Cordyceps. In addition, soil physicochemical properties, the level of bacterial and fungal diversity, and correlations of bacterial and fungal communities should be controlled to a certain level to increase the production of Chinese Cordyceps in artificial cultivation.


2013 ◽  
Vol 726-731 ◽  
pp. 4029-4032
Author(s):  
Xue Hong Tan ◽  
Cui Ying Zhang ◽  
Fan Cheng Kong ◽  
Da Wei Huang

The plant diversity and soil physicochemical properties of five national roads in Xuzhou area were studied with the investigation methods of uniform distribution and typical sample and determination of soil properties in laboratory. The results show as follow:(1) There were 40 kinds of arbor,23 kinds of shrub, 40 kinds of herb in five national roads. P. lasiocarpa, Ligustrum lucidum, Juniperus chinensis cv. Kaizuka, Photinia serrulata and T. repens played important roles ,their important values were at the top.(2) The order of comprehensive Shannon-Wiener index was G206>G104>G311>G310>G205. Artificial trees and shrubs inhibited the growth of weeds to some extent. (3) Soil physicochemical properties were affected by human beings, large soil bulk density, high pH value, nutrient deficiency were a common feature of soil in five national roads.


Sign in / Sign up

Export Citation Format

Share Document