dendrite morphogenesis
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Caitlin E. O'Brien ◽  
Susan H. Younger ◽  
Lily Yeh Jan ◽  
Yuh Nung Jan

Membrane trafficking is essential for sculpting neuronal morphology. The GARP and EARP complexes are conserved tethers that regulate vesicle trafficking in the secretory and endolysosomal pathways, respectively. Both complexes contain the Vps51, Vps52, and Vps53 proteins, and a complex-specific protein: Vps54 in GARP and Vps50 in EARP. In Drosophila, we find that both complexes are required for dendrite morphogenesis during developmental remodeling of multidendritic class IV da (c4da) neurons. Having found that sterol accumulates at the trans-Golgi network (TGN) in Vps54KO/KO neurons, we investigated genes that regulate sterols and related lipids at the TGN. Overexpression of oxysterol binding protein (Osbp) or knockdown of the PI4K four wheel drive (fwd) exacerbates the Vps54KO/KO phenotype, whereas eliminating one allele of Osbp rescues it, suggesting that excess sterol accumulation at the TGN is, in part, responsible for inhibiting dendrite regrowth. These findings distinguish the GARP and EARP complexes in neurodevelopment and implicate vesicle trafficking and lipid transfer pathways in dendrite morphogenesis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jacob A. Bahry ◽  
Karlie N. Fedder-Semmes ◽  
Michael P. Sceniak ◽  
Shasta L. Sabo

Mutations in GRIN2B, which encodes the GluN2B subunit of NMDA receptors, lead to autism spectrum disorders (ASD), but the pathophysiological mechanisms remain unclear. Recently, we showed that a GluN2B variant that is associated with severe ASD (GluN2B724t) impairs dendrite morphogenesis. To determine which aspects of dendrite growth are affected by GluN2B724t, we investigated the dynamics of dendrite growth and branching in rat neocortical neurons using time-lapse imaging. GluN2B724t expression shifted branch motility toward retraction and away from extension. GluN2B724t and wild-type neurons formed new branches at similar rates, but mutant neurons exhibited increased pruning of dendritic branches. The observed changes in dynamics resulted in nearly complete elimination of the net expansion of arbor size and complexity that is normally observed during this developmental period. These data demonstrate that ASD-associated mutant GluN2B interferes with dendrite morphogenesis by reducing rates of outgrowth while promoting retraction and subsequent pruning. Because mutant dendrites remain motile and capable of growth, it is possible that reducing pruning or promoting dendrite stabilization could overcome dendrite arbor defects associated with GRIN2B mutations.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009475
Author(s):  
Leo T. H. Tang ◽  
Meera Trivedi ◽  
Jenna Freund ◽  
Christopher J. Salazar ◽  
Maisha Rahman ◽  
...  

The assembly of neuronal circuits involves the migrations of neurons from their place of birth to their final location in the nervous system, as well as the coordinated growth and patterning of axons and dendrites. In screens for genes required for patterning of the nervous system, we identified the catp-8/P5A-ATPase as an important regulator of neural patterning. P5A-ATPases are part of the P-type ATPases, a family of proteins known to serve a conserved function as transporters of ions, lipids and polyamines in unicellular eukaryotes, plants, and humans. While the function of many P-type ATPases is relatively well understood, the function of P5A-ATPases in metazoans remained elusive. We show here, that the Caenorhabditis elegans ortholog catp-8/P5A-ATPase is required for defined aspects of nervous system development. Specifically, the catp-8/P5A-ATPase serves functions in shaping the elaborately sculpted dendritic trees of somatosensory PVD neurons. Moreover, catp-8/P5A-ATPase is required for axonal guidance and repulsion at the midline, as well as embryonic and postembryonic neuronal migrations. Interestingly, not all axons at the midline require catp-8/P5A-ATPase, although the axons run in the same fascicles and navigate the same space. Similarly, not all neuronal migrations require catp-8/P5A-ATPase. A CATP-8/P5A-ATPase reporter is localized to the ER in most, if not all, tissues and catp-8/P5A-ATPase can function both cell-autonomously and non-autonomously to regulate neuronal development. Genetic analyses establish that catp-8/P5A-ATPase can function in multiple pathways, including the Menorin pathway, previously shown to control dendritic patterning in PVD, and Wnt signaling, which functions to control neuronal migrations. Lastly, we show that catp-8/P5A-ATPase is required for localizing select transmembrane proteins necessary for dendrite morphogenesis. Collectively, our studies suggest that catp-8/P5A-ATPase serves diverse, yet specific, roles in different genetic pathways and may be involved in the regulation or localization of transmembrane and secreted proteins to specific subcellular compartments.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1289
Author(s):  
Anke Vermehren-Schmaedick ◽  
Jeffrey Y. Huang ◽  
Madison Levinson ◽  
Matthew B. Pomaville ◽  
Sarah Reed ◽  
...  

PARP6, a member of a family of enzymes (17 in humans) known as poly-ADP-ribose polymerases (PARPs), is a neuronally enriched PARP. While previous studies from our group show that Parp6 is a regulator of dendrite morphogenesis in rat hippocampal neurons, its function in the nervous system in vivo is poorly understood. Here, we describe the generation of a Parp6 loss-of-function mouse model for examining the function of Parp6 during neurodevelopment in vivo. Using CRISPR-Cas9 mutagenesis, we generated a mouse line that expressed a Parp6 truncated variant (Parp6TR) in place of Parp6WT. Unlike Parp6WT, Parp6TR is devoid of catalytic activity. Homozygous Parp6TR do not exhibit obvious neuromorphological defects during development, but nevertheless die perinatally. This suggests that Parp6 catalytic activity is important for postnatal survival. We also report PARP6 mutations in six patients with several neurodevelopmental disorders, including microencephaly, intellectual disabilities, and epilepsy. The most severe mutation in PARP6 (C563R) results in the loss of catalytic activity. Expression of Parp6C563R in hippocampal neurons decreases dendrite morphogenesis. To gain further insight into PARP6 function in neurons we also performed a BioID proximity labeling experiment in hippocampal neurons and identified several microtubule-binding proteins (e.g., MAP-2) using proteomics. Taken together, our results suggest that PARP6 is an essential microtubule-regulatory gene in mice, and that the loss of PARP6 catalytic activity has detrimental effects on neuronal function in humans.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Yin ◽  
Emma Spillman ◽  
Ethan S. Cheng ◽  
Jacob Short ◽  
Yang Chen ◽  
...  

AbstractLipid shuttling between neurons and glia contributes to the development, function, and stress responses of the nervous system. To understand how a neuron acquires its lipid supply from specific lipoproteins and their receptors, we perform combined genetic, transcriptome, and biochemical analyses in the developing Drosophila larval brain. Here we report, the astrocyte-derived secreted lipocalin Glial Lazarillo (GLaz), a homolog of human Apolipoprotein D (APOD), and its neuronal receptor, the brain-specific short isoforms of Drosophila lipophorin receptor 1 (LpR1-short), cooperatively mediate neuron-glia lipid shuttling and support dendrite morphogenesis. The isoform specificity of LpR1 defines its distribution, binding partners, and ability to support proper dendrite growth and synaptic connectivity. By demonstrating physical and functional interactions between GLaz/APOD and LpR1, we elucidate molecular pathways mediating lipid trafficking in the fly brain, and provide in vivo evidence indicating isoform-specific expression of lipoprotein receptors as a key mechanism for regulating cell-type specific lipid recruitment.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tzu-Yang Lin ◽  
Pei-Ju Chen ◽  
Hung-Hsiang Yu ◽  
Chao-Ping Hsu ◽  
Chi-Hon Lee

Stereotypic dendrite arborizations are key morphological features of neuronal identity, as the size, shape and location of dendritic trees determine the synaptic input fields and how information is integrated within developed neural circuits. In this review, we focus on the actions of extrinsic intercellular communication factors and their effects on intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons or supporting cells express adhesion receptors and secreted proteins that respectively, act via direct contact or over short distances to shape, size, and localize dendrites during specific developmental stages. The different ligand-receptor interactions and downstream signaling events appear to direct dendrite morphogenesis by converging on two categorical mechanisms: local cytoskeletal and adhesion modulation and global transcriptional regulation of key dendritic growth components, such as lipid synthesis enzymes. Recent work has begun to uncover how the coordinated signaling of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust dendritic patterning.


2021 ◽  
pp. 104959
Author(s):  
Hitomi Matsuno ◽  
Shoko Tsuchimine ◽  
Noriko Fukuzato ◽  
Kazunori O’Hashi ◽  
Hiroshi Kunugi ◽  
...  

2020 ◽  
Author(s):  
Amrutha Palavalli ◽  
Nicolás Tizón-Escamilla ◽  
Jean-François Rupprecht ◽  
Thomas Lecuit

Sign in / Sign up

Export Citation Format

Share Document