neuronal swelling
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ni Komang Sri Dewi Untari ◽  
Kurnia Kusumastuti ◽  
Guritno Suryokusumo ◽  
I Ketut Sudiana

Objectives. Acute motor axonal neuropathy (AMAN) is a disease that leads to acute flaccid paralysis and may result from the binding of antibody and antigen to the spinal cord. The objective of this study is to evaluate the protective effect of hyperbaric oxygen treatment (HBOT) on axon degeneration of the spinal cord and sciatic nerve of the AMAN model rabbit. Axonal degeneration was assessed by evaluating glutathione (GSH) activity, interleukin-1β (IL-1β) expression, and clinical and histopathological features. Methods. Twenty-one New Zealand rabbits were divided into three groups. The treatment group was exposed to 100% oxygen at 2.4 ATA 90 minutes for 10 days at a decompression rate of 2.9 pounds per square inch/minute. GSH level was evaluated using an enzyme-linked immune-sorbent assay. An expression of IL-1β in the spinal cord was determined by immunohistochemistry. Clinical appearances were done by motor scale and body weight. Histological features observed neuronal swelling and inflammatory infiltration in the sagittal lumbar region and the undulation of the longitudinal sciatic nerve. Results. Rabbits exposed to HBO had high GSH activity levels ( p < 0.05 ) but unexpectedly had high IL1β expression ( p > 0.05 ). In addition, the HBO-exposed rabbits had a better degree of undulation, the size of neuronal swelling was smaller, the number of macrophages was higher, and motor function was better than the AMAN model rabbits ( p < 0.05 ). Conclusions. These findings indicate that HBO therapy can decrease axon degeneration by triggering GSH activity, increasing IL-1β level, and restoring tissues and motor status. In conclusion, HBO has a protective effect on axon degeneration of the spinal cord and sciatic nerve of the AMAN model rabbit.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1768
Author(s):  
Benedetta Fibbi ◽  
Giada Marroncini ◽  
Cecilia Anceschi ◽  
Laura Naldi ◽  
Alessandro Peri

Hyponatremia, i.e. the presence of a serum sodium concentration ([Na+]) < 136 mEq/L, is the most frequent electrolyte imbalance in the elderly and in hospitalized patients. Symptoms of acute hyponatremia, whose main target is the central nervous system, are explained by the “osmotic theory” and the neuronal swelling secondary to decreased extracellular osmolality, which determines cerebral oedema. Following the description of neurological and systemic manifestations even in mild and chronic hyponatremia, in the last decade reduced extracellular [Na+] was associated with detrimental effects on cellular homeostasis independently of hypoosmolality. Most of these alterations appeared to be elicited by oxidative stress. In this review, we focus on the role of oxidative stress on both osmolality-dependent and -independent impairment of cell and tissue functions observed in hyponatremic conditions. Furthermore, basic and clinical research suggested that oxidative stress appears to be a common denominator of the degenerative processes related to aging, cancer progression, and hyponatremia. Of note, low [Na+] is able to exacerbate multiple manifestations of senescence and to decrease progression-free and overall survival in oncologic patients.


2021 ◽  
Author(s):  
Barbara Calabrese ◽  
Steven Jones ◽  
Yoko Yamaguchi-Shiraishi ◽  
Michael J Lingelbach ◽  
Uri Manor ◽  
...  

During early stages of ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation, conditions that trigger neuronal swelling, cause actin filaments to undergo a rapid and extensive reorganization within the somatodendritic compartment. Normally, Factin is concentrated within dendritic spines, with relatively little Factin in the dendrite shaft. However, beginning <5 min after incubation of neurons with NMDA, Factin depolymerizes within dendritic spines and polymerizes into long, stable filament bundles within the dendrite shaft and soma. A similar actinification of the somatodendritic compartment occurs after oxygen/glucose deprivation in vitro, and in mouse brain after photothrombotic stroke in vivo. Following transient, sub-lethal NMDA exposure these actin changes spontaneously reverse within 1-2 hours. A combination of Na+, Cl-, water, and Ca2+ entry are all necessary, but not individually sufficient, for induction of actinification. Spine F-actin depolymerization is also required. Actinification is driven by activation of the Factin polymerization factor inverted formin2 (INF2). Silencing of INF2 renders neurons more vulnerable to NMDA induced membrane leakage and cell death, and formin inhibition markedly increases ischemic infarct severity in vivo. These results show that ischemia induced actin filament reorganization within the dendritic compartment is an intrinsic pro-survival response that protects neurons from death induced by swelling.


Author(s):  
Julia A. Hellas ◽  
R. David Andrew

AbstractAn acute reduction in plasma osmolality causes rapid uptake of water by astrocytes but not by neurons, whereas both cell types swell as a consequence of lost blood flow (ischemia). Either hypoosmolality or ischemia can displace the brain downwards, potentially causing death. However, these disorders are fundamentally different at the cellular level. Astrocytes osmotically swell or shrink because they express functional water channels (aquaporins), whereas neurons lack functional aquaporins and thus maintain their volume. Yet both neurons and astrocytes immediately swell when blood flow to the brain is compromised (cytotoxic edema) as following stroke onset, sudden cardiac arrest, or traumatic brain injury. In each situation, neuronal swelling is the direct result of spreading depolarization (SD) generated when the ATP-dependent sodium/potassium ATPase (the Na+/K+ pump) is compromised. The simple, and incorrect, textbook explanation for neuronal swelling is that increased Na+ influx passively draws Cl− into the cell, with water following by osmosis via some unknown conduit. We first review the strong evidence that mammalian neurons resist volume change during acute osmotic stress. We then contrast this with their dramatic swelling during ischemia. Counter-intuitively, recent research argues that ischemic swelling of neurons is non-osmotic, involving ion/water cotransporters as well as at least one known amino acid water pump. While incompletely understood, these mechanisms argue against the dogma that neuronal swelling involves water uptake driven by an osmotic gradient with aquaporins as the conduit. Promoting clinical recovery from neuronal cytotoxic edema evoked by spreading depolarizations requires a far better understanding of molecular water pumps and ion/water cotransporters that act to rebalance water shifts during brain ischemia.


2021 ◽  
Vol 17 (7) ◽  
pp. e1008143
Author(s):  
Marte J. Sætra ◽  
Gaute T. Einevoll ◽  
Geir Halnes

Within the computational neuroscience community, there has been a focus on simulating the electrical activity of neurons, while other components of brain tissue, such as glia cells and the extracellular space, are often neglected. Standard models of extracellular potentials are based on a combination of multicompartmental models describing neural electrodynamics and volume conductor theory. Such models cannot be used to simulate the slow components of extracellular potentials, which depend on ion concentration dynamics, and the effect that this has on extracellular diffusion potentials and glial buffering currents. We here present the electrodiffusive neuron-extracellular-glia (edNEG) model, which we believe is the first model to combine compartmental neuron modeling with an electrodiffusive framework for intra- and extracellular ion concentration dynamics in a local piece of neuro-glial brain tissue. The edNEG model (i) keeps track of all intraneuronal, intraglial, and extracellular ion concentrations and electrical potentials, (ii) accounts for action potentials and dendritic calcium spikes in neurons, (iii) contains a neuronal and glial homeostatic machinery that gives physiologically realistic ion concentration dynamics, (iv) accounts for electrodiffusive transmembrane, intracellular, and extracellular ionic movements, and (v) accounts for glial and neuronal swelling caused by osmotic transmembrane pressure gradients. The edNEG model accounts for the concentration-dependent effects on ECS potentials that the standard models neglect. Using the edNEG model, we analyze these effects by splitting the extracellular potential into three components: one due to neural sink/source configurations, one due to glial sink/source configurations, and one due to extracellular diffusive currents. Through a series of simulations, we analyze the roles played by the various components and how they interact in generating the total slow potential. We conclude that the three components are of comparable magnitude and that the stimulus conditions determine which of the components that dominate.


2020 ◽  
Author(s):  
Marte J. Sætra ◽  
Gaute T. Einevoll ◽  
Geir Halnes

AbstractComputational modeling in neuroscience has largely focused on simulating the electrical activity of neurons, while ignoring other components of brain tissue, such as glial cells and the extracellular space. As such, most existing models can not be used to address pathological conditions, such as spreading depression, which involves dramatic changes in ion concentrations, large extracellular potential gradients, and glial buffering processes. We here present the electrodiffusive neuron-extracellular-glia (edNEG) model, which we believe is the first model to combine multicompartmental neuron modeling with an electrodiffusive framework for intra- and extracellular ion concentration dynamics in a local piece of neuro-glial brain tissue. The edNEG model (i) keeps track of all intraneuronal, intraglial, and extracellular ion concentrations and electrical potentials, (ii) accounts for neuronal somatic action potentials, and dendritic calcium spikes, (iii) contains a neuronal and glial homeostatic machinery that gives physiologically realistic ion concentration dynamics, (iv) accounts for electrodiffusive transmembrane, intracellular, and extracellular ionic movements, and (v) accounts for glial and neuronal swelling caused by osmotic transmembrane pressure gradients. We demonstrate that the edNEG model performs realistically as a local and closed system, i.e., that it maintains a steady state for moderate neural activity, but experiences concentration-dependent effects, such as altered firing patterns and homeostatic breakdown, when the activity level becomes too intense. Furthermore, we study the role of glia in making the neuron more tolerable to hyperactive firing and in limiting neuronal swelling. Finally, we discuss how the edNEG model can be integrated with previous spatial continuum models of spreading depression to account for effects of neuronal morphology, action potential generation, and dendritic Ca2+ spikes which are currently not included in these models.Author summaryNeurons communicate by electrical signals mediated by the movement of ions across the cell membranes. The ionic flow changes the ion concentrations on both sides of the cell membranes, but most modelers of neurons assume ion concentrations to remain constant. Since the neuronal membrane contains structures called ion pumps and cotransporters that work to maintain close-to baseline ion concentrations, and the brain contains a cell type called astrocytes that contribute in keeping an appropriate ionic environment for neurons, the assumption is justifiable in many scenarios. However, for several pathological conditions, such as epilepsy and spreading depression, the ion concentrations may vary dramatically. To study these scenarios, we need models that account for changes in ion concentrations. In this paper, we present what we call the electrodiffusive neuron-extracellular-glia model (edNEG), which keeps track of all ions in a closed system containing a neuron, the extracellular space surrounding it, and an astrocytic “domain”. The edNEG model ensures a complete and consistent relationship between ion concentrations and charge conservation. We envision that the model can be used to study a range of pathological conditions such as spreading depression and, hence, be of great value for the field of neuroscience.


2017 ◽  
Author(s):  
Thomas R. Murphy ◽  
David Davila ◽  
Nicholas Cuvelier ◽  
Leslie R. Young ◽  
Kelli Lauderdale ◽  
...  

AbstractNormal nervous system function is critically dependent on the balance of water and ions in the extracellular space. Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the extracellular space and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 minute of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.


2016 ◽  
Vol 37 (5) ◽  
pp. 1735-1747 ◽  
Author(s):  
R David Andrew ◽  
Yi-Ting Hsieh ◽  
C Devin Brisson

We examined in live coronal slices from rat and mouse which brain regions generate potassium-triggered spreading depolarization (SDKt). This technique simulates cortical spreading depression, which underlies migraine aura in the intact brain. An SDKt episode was evoked by increasing bath [K+]o and recorded as a propagating front of elevated light transmittance representing transient neuronal swelling in gray matter of neocortex, hippocampus, striatum, and thalamus. In contrast, SDKt was not imaged in hypothalamic nuclei or brainstem with exception of those nuclei near the dorsal brainstem surface. In rat slices, single neurons were whole-cell current clamped during SDKt. “Higher” neurons depolarized to near zero millivolts indicating SDKt generation. In contrast, seven types of neurons in hypothalamus and brainstem only slowly depolarized without generating SDKt, supporting our imaging findings. Therefore, SDKt is not a default of CNS neurons but rather displays a region-specific susceptibility, similar to anoxic depolarization, which we have proposed is correlated with a region’s vulnerability to traumatic brain injury. In the higher brain, SDKt may be a vestigial spreading depolarization that originally evolved to shut down and vasoconstrict gray matter regions more exposed to impact and contusion.


Sign in / Sign up

Export Citation Format

Share Document