scholarly journals Tungsten Accumulation in Hot Spring Sediments Resulting from Preferred Sorption of Aqueous Polytungstates to Goethite

Author(s):  
Qian Zhao ◽  
Qinghai Guo ◽  
Li Luo ◽  
Ketao Yan

Geothermal waters usually have elevated tungsten concentrations, making geothermal systems important sources of tungsten in the environment. To study the transport of tungsten in hot springs to hot spring sediment, which is one of the key processes for the release of geothermally derived tungsten to the surface environment, geochemical investigations of the hot springs and their corresponding sediments in Rehai (a representative hydrothermal area in southwestern China) and systematic laboratory experiments of tungstate and polytungstate adsorption onto typical iron-bearing minerals in hot spring sediments (i.e., pyrite and goethite) were conducted. The results demonstrate that considerable tungsten concentrations (i.e., not much less than 10 µg/L), formation of polytungstates under acidic conditions, and enrichment of iron oxide minerals represented by goethite are the prerequisites for extreme enrichment of tungsten in hot spring sediments (e.g., 991 µg/g in the ZZQ spring outflow channel). The absence of any of these conditions would weaken the immobilization of aqueous tungsten and result in higher mobility of tungsten in the hot springs and its further transport downstream, possibly polluting the other natural waters in and around Rehai that serve as local drinking water sources. This study provides an insight for identifying the key geochemical processes controlling the transport and fate of undesirable elements (in this case, tungsten) in geothermal systems.

2017 ◽  
Vol 50 (2) ◽  
pp. 885
Author(s):  
N. Özgür ◽  
T. Arife Çalışkan

The active geothermal waters of Kızıldere, Bayındır, and Salihli in the continental rift zones of the Büyük Menderes, Küçük Menderes and Gediz represent typical examples in the study area. The meteoric waters in the drainage areas of the rift zones percolate at NE-SW and/or NW-SE trending fault zones and permeable clastic sediments into the reaction zone of the roof area of a magma chamber situated in a probable depth of up to 5 km where meteoric fluids are heated by the cooling magmatic melt and ascend to the surface due to their lower density caused by convection cells. The volatile components of CO2, SO2, HCl, H2S, HB, HF, and He out of the magma reach the geothermal water reservoir where an equilibrium between altered rocks, gas components, and fluids performs. Thus, the geothermal waters ascend in the tectonical zones of weakness at the continental rift zones of the Menderes Massif in terms of hot springs, gases, and steams. These fluids are characterized by high to medium CO2, H2S and NaCl contents.


Author(s):  
Timothy Moloney ◽  
Kenneth Sims ◽  
John Kaszuba

Hydrothermal fluids in Yellowstone National Park have widely varying chemical composition. Heat and volatile flux from the hydrothermal system can be estimated by monitoring the composition and volume of emitted hydrothermal fluid, but the source of solutes in hydrothermal fluid is often nebulous and the geochemical processes that affect the nuclides are poorly understood. Measurements of 220Rn and 222Rn activity in hydrothermal fluids and of CO2 flux from fumaroles and hot springs were carried out in Yellowstone National Park during the summer of 2010. We observed a weak relationship between (220Rn/222Rn) and CO2 flux, which indicates that CO2 acts as a carrier gas to bring radon to the surface, but the radon is sourced from aquifer rocks rather than magma. If radon reaching the surface were sourced from magma below Yellowstone, there would be a stronger correlation between (220Rn/222Rn) and CO2 flux. Measurements of 223Ra, 224Ra, 226Ra, 228Ra, and major solute chemistry in hot spring waters support the hypothesis that the time scale of solute transport from the deep hydrothermal reservoir is long compared to the half lives of 220Rn and 222Rn, which are useful for processes operating on the time scale of 5 minutes to 20 days. Radium isotope activities in hot springs indicate that the solute transport time varies significantly from region to region, indicating that circulation in some areas operates on the time scale of 224Ra/223Ra (20-55 days) and circulation in other areas operates on the time scale of 228Ra/226Ra (25-1600 years). The radium isotope composition of hot spring water is also influenced by differences in regional aquifer rocks and geochemical processes such as sorption and mineral precipitation. In summary, geochemical and hydrothermal processes in Yellowstone operate on many different time scales and in diverse geologic conditions, but radionuclide activities possess excellent potential to study these complex phenomena.


2017 ◽  
Vol 373 (1739) ◽  
pp. 20160490 ◽  
Author(s):  
Alan Channing

The Lower Devonian Rhynie chert formed as silica sinter entombed an early terrestrial ecosystem. Silica sinter precipitates only from water flowing from alkali-chloride hot springs and geysers, the surface expression of crustal-scale geothermal systems that form low-sulfidation mineral deposits in the shallow subsurface. Active alkali-chloride hot springs at Yellowstone National Park create a suite of geothermally influenced environments; vent pools, sinter aprons, run-off streams, supra-apron terrace pools and geothermal wetlands that are habitats for modern hot-spring ecosystems. The plant-rich chert, which makes Rhynie internationally famous, probably formed in low-temperature environments at the margins of a sinter apron where frequent flooding by geothermal water and less frequent flooding by river waters created ephemeral to permanent wetland conditions. Here, the plants and associated microbes and animals would be immersed in waters with elevated temperature, brackish salinity, high pH and a cocktail of phytotoxic elements which created stresses that the fossil ecosystem must have tolerated. The environment excluded coeval mesophytic plants, creating a low-diversity hot-spring flora. Comparison with Yellowstone suggests the Rhynie plants were preadapted to their environment by life in more common and widespread environments with elevated salinity and pH such as coastal marshes, salt lakes, estuaries and saline seeps. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.


2021 ◽  
Author(s):  
Anirbid Sircar ◽  
Kriti Yadav ◽  
Namrata Bist ◽  
Hemangi Gaurangbhai Oza

Abstract Geothermal waters are extensively useful for various purposes such as in industrial plants, societal benefits, irrigation, and domestic consumptions. However, its physiochemical characterization is very important before using it for any rationale. The main objective of this paper is to identify the hydro-chemistry of geothermal water which is placed in southern part of Gujarat such as Unai hot springs and Saputara geothermal springs, and west coast geothermal province (WCGP) like Tural-Rajwadi group of hot springs. The standard methods were used to carry out the analysis of geothermal water. Piper, Stiff, Gibbs, Extended Durov, and Wilcox diagrams have been plotted to categorize water samples in facies. Spatial distribution curves have also been plotted for geothermal regions of Gujarat and Maharashtra. The geochemistry of groundwater is influenced by the presence of most important ions like Na+, Ca2+, Mg2+, K+, Cl-, HCO3-, and SO42-. Geothermal spring of Unai contains high TDS concentration around 1000 mg/l thus it cannot be used for drinking purposes but it can be utilized for domestic, balneology, and industrial purposes. However, after desalination this water can be utilized for drinking purposes. In Tural-Rajwadi hot springs TDS concentration was > 900 mg/l and pH range was between7-8 hence it can be used for domestic and industrial purposes. The temperature range of Tural-Rajwadi geothermal hot spring is 55-65°C which is very useful for milk pasteurization, industrial operations, space heating, balneology facilities like greenhouses and aquaculture ponds, and domestic purposes.


2019 ◽  
Vol 98 ◽  
pp. 07010
Author(s):  
Qinghai Guo

The Yunnan-Sichuan-Tibet Geothermal Province (YST) in China is characterized by extremely high terrestrial heat flow and widely distributed hydrothermal systems, which are discharging geothermal waters with a wide range of arsenic concentrations. In this paper, the distribution of arsenic in the YST geothermal waters are presented, the general hydrochemistry of these waters is described, and the primary geochemical processes controlling the concentrations and speciation of geothermal arsenic in YST is considered.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 132
Author(s):  
Huiling Zhou ◽  
Xiaocheng Zhou ◽  
Hejun Su ◽  
Ying Li ◽  
Fengli Liu ◽  
...  

The Weixi–Qiaohou Fault (WQF) is considered an important zone of the western boundary of the Sichuan–Yunnan block, and its seismicity has attracted much attention after a series of moderate–strong earthquakes, especially the Yangbi Ms6.4 earthquake that occurred on 21 May 2021. In the present research, we investigate major and trace elements, as well as hydrogen and oxygen isotopes, of 10 hot springs sites located along the WQF, which are recharged by infiltrated precipitation from 1.9 to 3.1 km. The hydrochemical types of most analyzed geothermal waters are HCO3SO4-Na, SO4Cl-NaCa, and SO4-Ca, proving that they are composed of immature water and thus are characterized by weak water–rock reactions. The heat storage temperature range was from 44.1 °C to 101.1 °C; the circulation depth was estimated to range between 1.4 and 4.3 km. The results of annual data analysis showed that Na+, Cl−, and SO42− in hot springs decreased by 11.20% to 23.80% north of the Yangbi Ms5.1 earthquake, which occurred on 27 March 2017, but increased by 5.0% to 28.45% to the south; this might be correlated with the difference in seismicity within the fault zone. The results of continuous measurements of NJ (H1) and EYXX (H2) showed irregular variation anomalies 20 days before the Yangbi Ms6.4 earthquake. In addition, Cl− concentration is more sensitive to near-field seismicity with respect to Na+ and SO42−. We finally obtained a conceptual model on the origin of groundwater and the hydrogeochemical cycling process in the WQF. The results suggest that anomalies in the water chemistry of hot spring water can be used as a valid indicator of earthquake precursors.


2019 ◽  
Vol 13 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Andi Gustomi ◽  
M. Rizza Muftiadi ◽  
Wahyu Adi ◽  
Arthur M Farhaby

Hot springs in Nyelanding Village, South Bangka Regency, have the potential of geothermal resources that can be used as a potential energy source, moreover found several types of freshwater fish that utilize these hot springs as their natural habitat. The objectives of this study are to identify the water quality and diversity of freshwater fish species in the hot spring area of Nyelanding Village, South Bangka Regency; analyze the feasibility of water quality for fisheries and tourism activities; and analyzing fish growth patterns found at these locations. The results showed that there were two types of fish found in the hot springs of Nyelanding Village, which were Gabus Fish (Channa striata) and Sepat Fish (Trichogaster trichopterus). There are 6 hot water quality parameters Village Nyelanding included in standard class II PP 82 of 2001 include pH, COD, TSS, TDS, Nitrate and Total fospat, two parameters are not required (depth and ammonia), one parameter (temperature ) not in normal natural waters. The growth pattern of Gabus Fish in the hot water of Nyelanding Village is negative allometric with a growth coefficient of 2.076. In general, based on the analysis of water quality parameters, the Nyelanding Village hot water is suitable for biota life as well as aquaculture activities and tourist areas. For aquaculture, the recommended type of fish is eurythermal. However, their habit of draining the hot water pool Village Nyelanding made towards development of the area is less recommended for fishing activity, but preferably as a tourist area.


2019 ◽  
Vol 125 ◽  
pp. 14002
Author(s):  
Rakhmadi Sulistyanto ◽  
Udi Harmoko ◽  
Gatot Yuliyanto

Research conducted at Pesanggrahan area, Sangubanyu Village, Bawang District, Batang Regency with geographical coordinates at 7°5'00 "00 S - 7°7'30" 00 S, and 109 ° 56'00 "E-109°58'30"E, with an area of around 25 Km². Research methods used quantitative and qualitative methods with descriptive analysis, geological and geochemical analysis. Geochemical fluid samples were taken in manifestations hot springs Pesanggrahan and hot water samples in Sibanteng and Sileri Crater to determine the relationship with geothermal systems in this area. Geomorphology divided into two geomorphology units, they are steep slope and sloping hill. Stratigraphy can be divided into three lithologies, which are andesite breccia, tuff breccia, and tuff sandstone. Based on fluid geochemical characteristics of manifestations, it can be interpreted that hot spring of Pesanggrahan area is outflow zone with bicarbonate-chloride water type, Sibanteng Crater and Sileri Crater, include upflow zone with water type sulfate for Sibanteng Crater, bicarbonate-sulfide water type for Sileri Crater. Environmental source geothermal fluid Pesanggrahan from the magmatic volcanic process. Sources geothermal fluid in Pesanggrahan, Sibanteng and Sileri Crater from meteoric water. Estimated temperature Pesanggrahan in the interval 50-100°C, Sileri Craters 160-180°C, and Sibanteng Craters 140-150°C. The Conceptual model of Pesanggrahan includes a geothermal system that associated with volcanic system and high relief liquid dominated system.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3512
Author(s):  
Andrea Butturini ◽  
Stefano Amalfitano ◽  
Peter Herzsprung ◽  
Oliver J. Lechtenfeld ◽  
Stefania Venturi ◽  
...  

Little is known about the quantity and quality of dissolved organic matter (DOM) in waters from continental geothermal systems, with only a few reports available from the Yellowstone US National Park. In this study, we explored the chemodiversity of DOM in water samples collected from two geothermal hot springs from the Kenyan East African Rift Valley, a region extremely rich in fumaroles, geysers, and spouting springs, located in close proximity to volcanic lakes. The DOM characterization included in-depth assessments performed by negative electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Reduced, saturated and little aromatic DOM compounds were dominant in the hot spring waters collected from either the Ol Njorowa gorge (ON) or the south shore of the soda-saline Lake Elementaita (ELM). Oxygen-poor and sulfur-bearing DOM molecules prevailed in ON, probably reflecting abiotic sulfurization from sulfide-rich geofluids. Nitrogen-bearing aliphatic and protein-like molecules were abundant in ELM, possibly perfusing through the organic-rich sediments of the adjacent Lake Elementaita. Notably, the heat-altered DOM of ancient autochthonous derivation could represent an overlooked source of aliphatic organic carbon for connected lentic environments, with a potential direct impact on nutrient cycling in lakes that receive geothermal water inputs.


2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


Sign in / Sign up

Export Citation Format

Share Document