scholarly journals Primordial Planets with an Admixture of Dark Matter Particles and Baryonic Matter

Author(s):  
Kiren O.V. ◽  
Arun Kenath ◽  
Sivaram C ◽  
Paul K.T.

In our earlier work we had discussed the possibility of primordial planets composed entirely of dark matter (DM) to be the main reason for not detecting DM particles. It has been suggested that primordial planets could have formed in the early Universe and the missing baryons in the Universe could be explained by primordial free-floating planets of solid hydrogen. Many such planets were recently discovered around the old and metal poor stars and such planets could have formed at early epochs. Another possibility for missing baryons in the Universe could be that these baryons are admixed with DM particles inside the primordial planets. Here we discuss the possibility of admixture of baryons to the DM primordial planets discussed in earlier work. We consider gravitationally bound DM objects with the DM particles constituting them varying in mass from 20 – 100GeV. Different fractions of DM particles mixed with baryonic matter in forming the primordial planets are discussed. For the different mass range of DM particles forming DM planets, we have estimated the radius and density of these planets with different fractions of DM and baryonic particles. It is found that for heavier mass DM particles with the admixture of certain fractions of baryonic particles, the mass of the planet increases and can reach or even substantially exceed Jupiter-mass.

Author(s):  
Arun Kenath ◽  
Kiren O. V. ◽  
Sivaram C

In a recent paper we had discussed possibility of DM at high redshifts forming primordial planets composed entirely of DM to be one of the reasons for not detecting DM (as the flux of ambient DM particles would be consequently reduced). In this paper we discuss the evolution of these DM objects as the universe expands. As universe expands there will be accretion of DM, Helium and Hydrogen layers (discussed in detail) on these objects. As they accumulate more and more mass, the layers get heated up leading to nuclear reactions which burn H and He when a critical thickness is reached. In the case of heavier masses of these DM objects, matter can be ejected explosively. It is found that the time scale of ejection is smaller than those from other compact objects like neutron stars (that lead to x-ray bursts). These flashes of energy could be a possible observational signature for these dense DM objects.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


BIBECHANA ◽  
1970 ◽  
Vol 6 ◽  
pp. 27-30
Author(s):  
Devendra Adhikari ◽  
Krishna Raj Adhikari

Different physical phenomena, techniques, and evidences which give the proof for the existence of dark matter have been discussed. Keywords: Baryonic matter; dark matter; Chandra x-ray ObservatoryDOI: 10.3126/bibechana.v6i0.3936BIBECHANA Vol. 6, March 2010 pp.27-30


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


2019 ◽  
pp. 64-72
Author(s):  
Nicholas Mee

Most of the matter in the universe exists in an unknown form called dark matter. All estimates of the mass of galaxies and galaxy clusters suggest they contain far more matter than is visible to us in the form of stars. Conventional explanations, such as the existence of large quantities of burnt-out stars known as MACHOs or dark gas clouds, have been ruled out. The most popular explanation is that dark matter consists of vast quantities of hypothetical stable particles known as WIMPs that were produced in vast quantities in the very early universe. Many laboratories around the world are searching for signs of these particles. These include the Italian Gran Sasso laboratory running the XENON100 experiment. Some theorists have suggested the evidence for dark matter would disappear if we had a better theory of gravity. Analysis of the Bullet Cluster indicates such proposals will not work.


2016 ◽  
Vol 8 (6) ◽  
pp. 86
Author(s):  
Abdul L. Bhuiyan

<p class="1Body">At the end of the period of contraction of the universe, all objects transform into gravity particles such as photons and electron- positron pairs which exist in virtual state in spacetime at an extremely high temperature. These particles move with extremely high speed comparable to the speed of light. As the early universe starts cooling, the speed of the particles starts to decrease when photons and electron- positron pairs move out of spacetime and appear as real particles. As the temperature continues to fall due to cooling, the electron- positron pairs start forming quarks (u and d) while simultaneously the energy of photons transform into dark matter. The u quarks and d quarks then continue to form nuclei of different elements including radio elements. Simultaneously, the lighter elements such as hydrogen, nitrogen, carbon, oxygen, phosphorus, etc. form the precursors to DNAs and RNAs of living organisms.</p>


2019 ◽  
Vol 28 (08) ◽  
pp. 1950065 ◽  
Author(s):  
Tahani R. Makki ◽  
Mounib F. El Eid ◽  
Grant J. Mathews

The light elements and their isotopes were produced during standard big bang nucleosynthesis (SBBN) during the first minutes after the creation of the universe. Comparing the calculated abundances of these light species with observed abundances, it appears that all species match very well except for lithium (7Li) which is overproduced by the SBBN. This discrepancy is rather challenging for several reasons to be considered on astrophysical and on nuclear physics ground, or by invoking nonstandard assumptions which are the focus of this paper. In particular, we consider a variation of the chemical potentials of the neutrinos and their temperature. In addition, we investigated the effect of dark matter on 7Li production. We argue that including nonstandard assumptions can lead to a significant reduction of the 7Li abundance compared to that of SBBN. This aspect of lithium production in the early universe may help to resolve the outstanding cosmological lithium problem.


2009 ◽  
Vol 18 (05) ◽  
pp. 865-887
Author(s):  
S. K. SRIVASTAVA ◽  
J. DUTTA

In this paper, the cosmology of the late and future universe is obtained from f(R) gravity with nonlinear curvature terms R2 and R3 (R is the Ricci scalar curvature). It is different from f(R) dark energy models where nonlinear curvature terms are taken as a gravitational alternative to dark energy. In the present model, neither linear nor nonlinear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms and appear in the Friedmann equation derived from f(R) gravitational equations. This approach has an advantage over f(R) dark energy models in three ways: (i) results are consistent with WMAP observations, (ii) dark matter is produced from the gravitational sector and (iii) the universe expands as ~ t2/3 during dominance of the curvature-induced dark matter, which is consistent with the standard cosmology. Curvature-induced dark energy mimics phantom and causes late acceleration. It is found that transition from matter-driven deceleration to acceleration takes place at the redshift 0.36 at time 0.59 t0 (t0 is the present age of the universe). Different phases of this model, including acceleration and deceleration during the phantom phase, are investigated. It is found that expansion of the universe will stop at the age of 3.87 t0 + 694.4 kyr. After this epoch, the universe will contract and collapse by the time of 336.87 t0 + 694.4 kyr. Further, it is shown that cosmic collapse obtained from classical mechanics can be avoided by making quantum gravity corrections relevant near the collapse time due to extremely high energy density and large curvature analogous to the state of the very early universe. Interestingly, the cosmological constant is also induced here; it is extremely small in the classical domain but becomes very high in the quantum domain. This result explains the largeness of the cosmological constant in the early universe due to quantum gravity effects during this era and its very low value in the present universe due to negligible quantum effect in the late universe.


2012 ◽  
Vol 12 ◽  
pp. 120-130
Author(s):  
LI-ZHI FANG

Although the gravitational field in the universe is dominated by dark matter, observations show that the statistical properties of cosmic baryonic matter are significantly and systematically decoupled from that of the underlying dark matter. This is because the cosmic baryon fluid in highly nonlinear regime is in a state of fully developed turbulence, of which the velocity field consists of shocks, vortices and complex structures. This scenario provides a coherent explanation of various phenomena referring to the decoupling of the IGM from dark matter, including the log-Poisson non-Gaussianity of Ly-alpha transmitted flux fluctuations; turbulent broadening; abnormal scaling; baryon missing in halos etc.


2002 ◽  
Vol 11 (03) ◽  
pp. 433-436 ◽  
Author(s):  
A. A. GRIB ◽  
YU. V. PAVLOV

The model of creation of observable particles and particles of the dark matter, considered to be superheavy particles, due to particle creation by the gravitational field of the Friedmann model of the early Universe is given. Estimates on the parameters of the model leading to observable values of the baryon number of the Universe and the dark matter density are made.


Sign in / Sign up

Export Citation Format

Share Document