scholarly journals Incorporating the Effects of Moisture into a Dynamical Parameter: Moist Vorticity and Moist Divergence

2015 ◽  
Vol 30 (6) ◽  
pp. 1411-1428 ◽  
Author(s):  
Weihong Qian ◽  
Jun Du ◽  
Xiaolong Shan ◽  
Ning Jiang

Abstract Properly including moisture effects into a dynamical parameter can significantly increase the parameter’s ability to diagnose heavy rain locations. The relative humidity–based weighting approach used to extend the moist potential vorticity (MPV) to the generalized moist potential vorticity (GMPV) is analyzed and demonstrates such an improvement. Following the same approach, two new diagnostic parameters, moist vorticity (MV) and moist divergence (MD), have been proposed in this study by incorporating moisture effects into the traditional vorticity and divergence. A regional heavy rain event that occurred along the Yangtze River on 1 July 1991 is used as a case study, and 41 daily regional heavy rain events during the notorious flooding year of 1998 in eastern China are used for a systematic evaluation. Results show that after the moisture effects were properly incorporated, the improved ability of all three parameters to capture a heavy rain area is significant (statistically at the 99% confidence level): the GMPV is improved over the MPV by 194%, the MD over the divergence by 60%, and the MV over the vorticity by 34% in terms of the threat score (TS). The average TS is 0.270 for the MD, 0.262 for the MV, and 0.188 for the GMPV. Application of the MV and MD to assess heavy rain potential is not intended to replace a complete, multiscale forecasting methodology; however, the results from this study suggest that the MV and MD could be used to postprocess a model forecast to potentially improve heavy rain location predictions.

2016 ◽  
Vol 31 (4) ◽  
pp. 1393-1396 ◽  
Author(s):  
David M. Schultz ◽  
Thomas Spengler

Abstract In a recent article, Qian et al. introduced the quantities moist vorticity and moist divergence to diagnose locations of heavy rain. These quantities are constructed by multiplying the relative vorticity and divergence by relative humidity to the power k, where k = 10 in their article. Their approach is similar to that for the previously constructed quantity generalized moist potential vorticity. This comment critiques the approach of Qian et al., demonstrating that the moist vorticity, moist divergence, and by extension generalized moist potential vorticity are flawed mathematically and meteorologically. Raising relative humidity to the 10th power is poorly justified and is based on a single case study at a single time. No meteorological evidence is presented for why areas of moist vorticity and moist divergence should overlap with regions of 24-h accumulated rainfall. All three quantities have not been verified against the output of precipitation directly from the model nor is the approach of combining meteorological quantities into a single parameter appropriate in an ingredients-based forecasting approach. Researchers and forecasters are advised to plot the model precipitation directly and employ an ingredients-based approach, rather than rely on these flawed quantities.


2013 ◽  
Vol 10 (2) ◽  
pp. 2767-2790 ◽  
Author(s):  
S. Nagao ◽  
M. Kanamori ◽  
S. Ochiai ◽  
S. Tomihara ◽  
K. Fukushi ◽  
...  

Abstract. Effects of a heavy rain event on radiocesium export were studied at stations on the Natsui River and the Same River in Fukushima Prefecture, Japan after Typhoon Roke during 21–22 September 2011, six months after the Fukushima Daiichi Nuclear Power Plant accident. Radioactivity of 134Cs and 137Cs in river waters was 0.011–0.098 Bq L−1 at normal flow conditions during July–September in 2011, but it increased to 0.85 Bq L−1 in high flow conditions by heavy rains occurring with the typhoon. The particulate fractions of 134Cs and 137Cs were 21–56% in the normal flow condition, but were close to 100% after the typhoon. These results indicate that the pulse input of radiocesium associated with suspended particles from land to coastal ocean occurred by the heavy rain event. Export flux of 134Cs and 137Cs by the heavy rain accounts for 30–50% of annual radiocesium flux in 2011. Results show that rain events are one factor controlling the transport and dispersion of radiocesium in river watersheds and coastal marine environments.


2018 ◽  
Vol 18 (6) ◽  
pp. 2092-2099
Author(s):  
K. Doederer ◽  
Z. Ilieva ◽  
J. Keller

Abstract During disinfection, dissolved organic matter (DOM) is the major precursor to form disinfection by-products (DBPs), which may be of potential human health concern. Previous research focused on waters of continental climates and less on subtropical environments. However, water sources in subtropical climates are regularly impacted by major rain events during the summer months. This study evaluated the C- and N-DBP precursor removal capacity of two conventional ion exchange (IEX) resins and one magnetic ion exchange (MIEX) resin with a raw water at normal conditions and impacted by a heavy rain event. The rain event introduced 3 mg C/L total organic carbon (TOC) comprised mainly of low to medium molecular weight organics. All three resins were able to remove TOC and DBP precursors (>66%) but being less efficient in reducing turbidity (3–48%) and colour (9–24%). The resin with the smallest bead size was affected the most by the increased medium MW DOM loading resulting in DOM and C-DBP precursor removal performance losses of 10% and 22%. When applied as a pre-treatment for coagulation, MIEX was more efficient in DBP precursor control than coagulation in addressing the additional organic and DBP precursor loading after a heavy rain event.


2018 ◽  
Vol 115 (9) ◽  
pp. 2016-2021 ◽  
Author(s):  
Jesse A. Day ◽  
Inez Fung ◽  
Weihan Liu

The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.


2015 ◽  
Vol 15 (7) ◽  
pp. 1677-1693 ◽  
Author(s):  
F. Pastor ◽  
J. A. Valiente ◽  
M. J. Estrela

Abstract. Heavy rain events are frequently recorded in the Western Mediterranean causing economic losses and even human casualties. The Western Mediterranean is a deep and almost closed sea surrounded by high mountain ranges and with little exchange of water with the Atlantic ocean. A main factor in the development of torrential rains is ocean-atmosphere exchanges of heat and moisture that can potentially destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a previous Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of areas that at a greater extent favour air-sea interaction leading to the development of torrential rainfall in the Valencia region has been shown. This methodology could be extended to the whole Mediterranean basin to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.


2003 ◽  
Vol 131 (8) ◽  
pp. 1769-1782 ◽  
Author(s):  
Zhihong Jiang ◽  
George Tai-Jen Chen ◽  
Ming-Chin Wu

Abstract Daily rainfall data at 15 stations in Taiwan and the grid dataset of the National Centers for Environmental Prediction–National Center for Atmospheric Research during the period of February–March 1951–2000 were used to reveal the characteristics of large-scale circulations associated with spring heavy rain events over Taiwan in strong ENSO and non-ENSO years. The effect of interdecadal variation on the relationship of spring rainfall and ENSO was also examined. Results showed that the different regimes of interdecadal variation that occurred in the late 1970s exert significant effect on the relationship between ENSO and spring rainfall in Taiwan. A pronounced positive correlation with statistical significance between cold season Niño-3 SST and the following spring rainfall over western Taiwan was only found since the late 1970s. Large-scale environmental conditions associated with the heavy spring rain events in strong ENSO and non-ENSO years were found to be quite different. Intrusion of a weak midlatitude frontal system into the eastern China coastal area coupled with an anomalous anticyclone over the Philippine Sea (PSAC) in the lower troposphere were primarily responsible for the spring heavy rain events in strong ENSO years. On the other hand, the intrusion of a much more intense midlatitude frontal system into China and the coastal area was necessary to generate spring heavy rain events in non-ENSO years. This difference is also instrumental for more frequent occurrence of heavy rainfall events and more rainfall amount observed in ENSO years.


2015 ◽  
Vol 3 (2) ◽  
pp. 1357-1396 ◽  
Author(s):  
F. Pastor ◽  
J. A. Valiente ◽  
M. J. Estrela

Abstract. Heavy rain events are frequently recorded in the Western Mediterranean causing economic losses and even human casualties. The Western Mediterranean is a deep and almost closed sea surrounded by high mountain ranges and with little exchange of water with the Atlantic ocean. A main factor in the development of torrential rains are ocean-atmosphere exchanges of heat and moisture that can potentially destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a previous Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of recharge areas where air–sea interaction favors the development of torrential rainfall in Valencia region has been shown. This methodology could be extended to the whole Mediterranean basin to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.


2008 ◽  
Vol 9 (2) ◽  
pp. 256-266 ◽  
Author(s):  
Roongroj Chokngamwong ◽  
Long S. Chiu

Abstract Daily rainfall data collected from more than 100 gauges over Thailand for the period 1993–2002 are used to study the climatology and spatial and temporal characteristics of Thailand rainfall variations. Comparison of the Thailand gauge (TG) data binned at 1° × 1° with the Global Precipitation Climatology Centre (GPCC) monitoring product shows a small bias (1.11%), and the differences can be reconciled in terms of the increased number of stations in the TG dataset. Comparison of daily TG with Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 rain estimates shows improvements over version 5 (V5) in terms of bias and mean absolute difference (MAD). The V5 is computed from the adjusted Geostationary Operational Environmental Satellite (GOES) precipitation index (AGPI) and V6 is computed using the TRMM Multisatellite Precipitation Analysis (TMPA) algorithm. The V6 histogram is much closer to that of TG than V5 in terms of rain fraction and conditional rain rates. Scatterplots show that both versions of the satellite products are deficient in capturing heavy rain events. In terms of detecting rain events, a critical success index (CSI) shows no difference between V6 and V5 3B42. The CSI for V6 is higher for the rainy season than the dry season. These results are generally insensitive to rain-rate threshold and averaging periods. The temporal and spatial autocorrelation of daily rain rates for TG, V6, and V5 3B42 are computed. Autocorrelation function analyses show improved temporal and spatial autocorrelations for V6 compared to TG over V5 with e-folding times of 1, 1, and 2 days, and isotropic spatial decorrelation distances of 1.14°, 1.87°, and 3.61° for TG, V6, and V5, respectively. Rain event statistics show that the V6 3B42 overestimates the rain event durations and underestimates the rain event separations and the event conditional rain rates when compared to TG. This study points to the need to further improve the 3B42 algorithm to lower the false detection rate and improve the estimation of heavy rainfall events.


Sign in / Sign up

Export Citation Format

Share Document