scholarly journals The cytosolic role of EZH2-IMPDH2 complex in melanoma progression and metastasis via GTP regulation

2021 ◽  
Author(s):  
Gamze Kuser Abali ◽  
Fumihito Noguchi ◽  
Pacman Szeto ◽  
Youfang Zhang ◽  
Cheng Huang ◽  
...  

Although conventional EZH2 enzymatic inhibitors are effective in various tumors, we demonstrated that B-Raf mutant melanoma cells do not respond effectively to both GSK126 and EPZ6438 when used in physiological levels in vitro. In addition, the EZH2 knockdown phenotype (lowered tumorigenesis and metastasis) was rescued by both wild-type EZH2 and methyl-transferase-deficient H689A mutant and cytosolic nuclear localization signal (NLS) deletion-mutant EZH2 overexpression in vitro and in vivo. This clearly indicates a methyl-transferase-independent role of cytosolic EZH2 in melanoma cell tumorigenicity and metastasis. To identify potential methyltransferase-independent mechanisms of EZH2 in melanoma, we performed Liquid Chromatography-Mass Spectrometry (LC-MS) on EZH2 immunoprecipitates from multiple melanoma cell lines and human PDXs. We identified an interacting protein called inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in de-novo GTP synthesis. Biochemical studies showed that N-terminal EED-binding domain of cytosolic EZH2 interacts with CBS domain of IMPDH2 in a PRC2- and methylation-independent manner. EZH2 silencing reduces cellular GTP levels by impeding IMPDH2 tetramerization, stability and its cytosolic localization. On the other hand, guanosine, which replenishes GTP, stabilized ribosomal biogenesis and actomyosin contractility and thereby, promoted invasive and clonogenic cell states even in EZH2 silenced cells. In human melanoma clinical samples, high cytosolic EZH2 and IMPDH2 expressions are directly correlated with the nucleolar enlargement in the metastatic melanomas. In addition, IMPDH2 silencing reduces EZH2 overexpression induced proliferation and invasion phenotype that is reversed later by guanosine addition. In addition, EZH2-IMPDH2 complex was also validated across a range of cancers. These results point to a methyltransferase-independent but GTP-dependent non-canonical mechanism of EZH2 regulation in various cancers. Sappanone A (SA), that is shown to inhibit IMPDH2/EZH2 interaction and thereby IMPDH2 tetrametization, is anti-tumorigenic across a range of cancers including melanoma, but not in normal melanocytes or bone marrow progenitor cells. In summary, EZH2 contributes to melanoma tumorigenicity and invasion by upregulating ribosomal biogenesis and actomyosin contractility via IMPDH2-induced GTP synthesis.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


Author(s):  
Xiong Shu ◽  
Pan-Pan Zhan ◽  
Li-Xin Sun ◽  
Long Yu ◽  
Jun Liu ◽  
...  

BackgroundFocusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis.MethodsBioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo.ResultsBCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism.ConclusionBCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.


2020 ◽  
Vol 14 ◽  
Author(s):  
Santiago E. Charif ◽  
Luciana Luchelli ◽  
Antonella Vila ◽  
Matías Blaustein ◽  
Lionel M. Igaz

TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form of human TDP-43 (TDP-43-ΔNLS), recapitulating ALS/FTD features. We applied in HEK293 cells a method for labeling de novo translation, surface sensing of translation (SUnSET), based on puromycin (PURO) incorporation. While control cells displayed robust puromycilation, TDP-43-ΔNLS transfected cells exhibited reduced ongoing protein synthesis. Next, by using a transgenic mouse overexpressing cytoplasmic TDP-43 in the forebrain (TDP-43-ΔNLS mice) we assessed whether cytoplasmic TDP-43 regulates global translation in vivo. Polysome profiling of brain cortices from transgenic mice showed a shift toward non-polysomal fractions as compared to wild-type littermates, indicating a decrease in global translation. Lastly, cellular level translational assessment by SUNSET was performed in TDP-43-ΔNLS mice brain slices. Control mice slices incubated with PURO exhibited robust cytoplasmic PURO signal in layer 5 neurons from motor cortex, and normal nuclear TDP-43 staining. Neurons in TDP-43-ΔNLS mice slices incubated with PURO exhibited high cytoplasmic expression of TDP-43 and reduced puromycilation respect to control mice. These in vitro and in vivo results indicate that cytoplasmic TDP-43 decreases global translation and potentially cause functional/cytotoxic effects as observed in ALS/FTD. Our study provide in vivo evidence (by two independent and complementary methods) for a role of mislocalized TDP-43 in the regulation of global mRNA translation, with implications for TDP-43 proteinopathies.


2020 ◽  
Vol 168 (4) ◽  
pp. 319-328 ◽  
Author(s):  
Satoshi Kofuji ◽  
Atsuo T Sasaki

Abstract Growing cells increase multiple biosynthetic processes in response to the high metabolic demands needed to sustain proliferation. The even higher metabolic requirements in the setting of cancer provoke proportionately greater biosynthesis. Underappreciated key aspects of this increased metabolic demand are guanine nucleotides and adaptive mechanisms to regulate their concentration. Using the malignant brain tumour, glioblastoma, as a model, we have demonstrated that one of the rate-limiting enzymes for guanosine triphosphate (GTP) synthesis, inosine monophosphate dehydrogenase-2 (IMPDH2), is increased and IMPDH2 expression is necessary for the activation of de novo GTP biosynthesis. Moreover, increased IMPDH2 enhances RNA polymerase I and III transcription directly linking GTP metabolism to both anabolic capacity as well as nucleolar enlargement historically observed as associated with cancer. In this review, we will review in detail the basis of these new discoveries and, more generally, summarize the current knowledge on the role of GTP metabolism in cancer.


2003 ◽  
Vol 23 (19) ◽  
pp. 7044-7054 ◽  
Author(s):  
Antonio Bedalov ◽  
Maki Hirao ◽  
Jeffrey Posakony ◽  
Melisa Nelson ◽  
Julian A. Simon

ABSTRACT Nicotine adenine dinucleotide (NAD+) performs key roles in electron transport reactions, as a substrate for poly(ADP-ribose) polymerase and NAD+-dependent protein deacetylases. In the latter two processes, NAD+ is consumed and converted to ADP-ribose and nicotinamide. NAD+ levels can be maintained by regeneration of NAD+ from nicotinamide via a salvage pathway or by de novo synthesis of NAD+ from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the NAD+-dependent deacetylase Hst1p as a sensor of NAD+ levels and regulator of NAD+ biosynthesis. Using transcript arrays, we show that low NAD+ states specifically induce the de novo NAD+ biosynthesis genes while the genes in the salvage pathway remain unaffected. The NAD+-dependent deacetylase activity of Hst1p represses de novo NAD+ biosynthesis genes in the absence of new protein synthesis, suggesting a direct effect. The known Hst1p binding partner, Sum1p, is present at promoters of highly inducible NAD+ biosynthesis genes. The removal of HST1-mediated repression of the NAD+ de novo biosynthesis pathway leads to increased cellular NAD+ levels. Transcript array analysis shows that reduction in cellular NAD+ levels preferentially affects Hst1p-regulated genes in comparison to genes regulated with other NAD+-dependent deacetylases (Sir2p, Hst2p, Hst3p, and Hst4p). In vitro experiments demonstrate that Hst1p has relatively low affinity toward NAD+ in comparison to other NAD+-dependent enzymes. These findings suggest that Hst1p serves as a cellular NAD+ sensor that monitors and regulates cellular NAD+ levels.


1979 ◽  
Vol 82 (1) ◽  
pp. 171-NP ◽  
Author(s):  
ILSE LASNITZKI ◽  
TAKEO MIZUNO

SUMMARY Rat prostate glands are induced de novo by androgens in 16·5-day-old male and female urogenital sinuses in vitro as epithelial buds projecting into the surrounding mesenchyme. The role of the mesenchyme in this process has been investigated in various epithelial-mesenchymal recombinations in organ culture. Isolated epithelium did not form buds but required the presence of the mesenchyme to do so. This requirement seemed to be specific; in the presence of testosterone or dihydrotestosterone only urogenital mesenchyme increased cell division in the urogenital epithelium and stimulated prostatic bud formation. In contrast, heterotypic mesenchyme did not affect epithelial mitosis and failed to induce buds while heterotypic epithelia did not respond to urogenital mesenchyme. In recombinants of urogenital mesenchyme pretreated with androgen and untreated urogenital epithelium, grown in androgen-free medium, the majority of explants developed prostatic buds while only a few buds were formed from epithelium pretreated with androgen when it was recombined with untreated mesenchyme. The role of the mesenchyme in the loss of androgen responsiveness of the older female sinuses was examined in heterochronic recombinants. It was found that the old female mesenchyme failed to induce buds in young epithelium while young male or female mesenchymes induced them in the old female epithelium. The results suggest that the urogenital mesenchyme is essential for the initiation of the foetal rat prostate gland and that it may be a target for androgens and complement or mediate their effect on the epithelium.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 95-95 ◽  
Author(s):  
Keisuke Ito ◽  
Paolo Sportoletti ◽  
John G Clohessy ◽  
Grisendi Silvia ◽  
Pier Paolo Pandolfi

Abstract Abstract 95 Myelodysplastic syndrome (MDS) is an incurable stem cell disorder characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Nucleophosmin (NPM) is directly implicated in primitive hematopoiesis, the pathogenesis of hematopoietic malignancies and more recently of MDS. However, little is known regarding the molecular role and function of NPM in MDS pathogenesis and in stem cell biology. Here we present data demonstrating that NPM plays a critical role in the maintenance of hematopoietic stem cells (HSCs) and the transformation of MDS into leukemia. NPM is located on chromosome 5q and is frequently lost in therapy-related and de novo MDS. We have previously shown that Npm1 acts as a haploinsufficient tumor suppressor in the hematopoietic compartment and Npm1+/− mice develop a hematologic syndrome with features of human MDS, including increased susceptibility to leukemogenesis. As HSCs have been demonstrated to be the target of the primary neoplastic event in MDS, a functional analysis of the HSC compartment is essential to understand the molecular mechanisms in MDS pathogenesis. However, the role of NPM in adult hematopoiesis remains largely unknown as Npm1-deficiency leads to embryonic lethality. To investigate NPM function in adult hematopoiesis, we have generated conditional knockout mice of Npm1, using the Cre-loxP system. Analysis of Npm1 conditional mutants crossed with Mx1-Cre transgenic mice reveals that Npm1 plays a crucial role in adult hematopoiesis and ablation of Npm1 in adult HSCs leads to aberrant cycling and followed by apoptosis. Analysis of cell cycle status revealed that HSCs are impaired in their ability to maintain quiescence after Npm1-deletion and are rapidly depleted in vivo as well as in vitro. Competitive reconstitution assay revealed that Npm1 acts cell-autonomously to maintain HSCs. Conditional inactivation of Npm1 leads to an MDS phenotype including a profoundly impaired ability to differentiate into cells of the erythroid lineage, megakaryocyte dyspoiesis and centrosome amplification. Furthermore, Npm1 loss evokes a p53-dependent response and Npm1-deleted HSCs undergo apoptosis in vivo and in vitro. Strikingly, transfer of the Npm1 mutation into a p53-null background rescued the apoptosis of Npm1-ablated HSCs and resulted in accelerated transformation to an aggressive and lethal form of acute myeloid leukemia. Our findings highlight the crucial role of NPM in stem cell biology and identify a new mechanism by which MDS can progress to leukemia. This has important therapeutic implications for de novo MDS as well as therapy-related MDS, which is known to rapidly evolve to leukemia with frequent loss or mutation of TRP53. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2382-2382
Author(s):  
Jie Xu ◽  
Wei-na Zhang ◽  
Tao Zhen ◽  
Yang Li ◽  
Jing-yi Shi ◽  
...  

Abstract Abstract 2382 Epigenetic modification process is required for the development of hematopoietic cells. DNA methyltransferase DNMT3A, responsible for de novo DNA methylation, was newly reported to have a high frequency of mutations in hematopoietic malignancies. Conditional knock-out of DNMT3A promoted self-renewal activity of murine hematopoietic stem cells (HSCs). However, the role of mutated DNMT3A in hematopoiesis and its regulative mechanism of epigenetic network mostly remain unknown. Here we showed that the Arg882His (R882H) hotspot locus on DNMT3A impaired the normal function of this enzyme and resulted in an abnormal increase of primitive hematopoietic cells. In both controlled in vivo and in vitro assays, we found that the cells transfected by R882H mutant promoted cell proliferation, while decreased the differentiation of myeloid lineage compared to those with wild type. Analysis of bone marrow (BM) cells from mice transduced by R882H reveals an expansion of Lin−Sca-1+C-kit+ populations and a reduction of mature myeloid cells. Meanwhile, a cluster of upregulated genes and downregulated lineage-specific differentiation genes associated with hematopoiesis were discovered in mice BM cells with R882H mutation. We further evaluated the association of mutated DNMT3A and HOXB4 which was previously detected to be highly expressed in clinical samples carrying R882 mutation. Compared with wildtype DNMT3A, R882H mutation disrupted the repression of HOXB4 by largely recruiting tri-methylated histone 3 lysine 4 (H3K4). Taken together, our results showed that R882H mutation disturbed HSC activity through H3K4 tri-methylation, and transcriptional activation of HSC-related genes. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document