scholarly journals Evaluating the Expression of Candidate Homeobox Genes and Their Role in Local-Site Inflammation in Mucosal Tissue Obtained from Children with Non-Syndromic Cleft Lip and Palate

2021 ◽  
Vol 11 (11) ◽  
pp. 1135
Author(s):  
Nityanand Jain ◽  
Mara Pilmane

Craniofacial development including palatogenesis is a complex process which requires an orchestrated and spatiotemporal expression of various genes and factors for proper embryogenesis and organogenesis. One such group of genes essential for craniofacial development is the homeobox genes, transcriptional factors that are commonly associated with congenital abnormalities. Amongst these genes, DLX4, HOXB3, and MSX2 have been recently shown to be involved in the etiology of non-syndromic cleft lip and palate. Hence, we investigated the gene and protein expression of these genes in normal and cleft affected mucosal tissue obtained from 22 children, along with analyzing their role in promoting local-site inflammation using NF-κB. Additionally, we investigated the role of PTX3, which plays a critical role in tissue remodeling and wound repair. We found a residual gene and protein expression of DLX4 in cleft mucosa, although no differences in gene expression levels of HOXB3 and MSX2 were noted. However, a significant increase in protein expression for these genes was noted in the cleft mucosa (p < 0.05), indicating increased cellular proliferation. This was coupled with a significant increase in NF-κB protein expression in cleft mucosa (p < 0.05), highlighting the role of these genes in promotion of pro-inflammatory environment. Finally, no differences in gene expression of PTX3 were noted.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1755-1755 ◽  
Author(s):  
Joanne Manns ◽  
Mario Rico ◽  
Leonard L. Mason ◽  
De La Cadena A. Raul

Abstract TSP1 has the ability to bind to human fibroblasts, to form a complex with coagulation factor V/Va (Thrombosis Research 116:533, 2005), to promote thrombin generation on the surface of a monocytic cell line and to neutralize tissue factor pathway inhibitor (TFPI) (J Biol Chem275:31715, 2000). Disruption of TSP1 binding to neutrophils was associated with beneficial effects in an experimental animal model of inflammation, in part, by down regulating CTGF gene and protein expression (Arthritis Rheum54:2415, 2006). CTGF is a novel potent cysteine-rich heparin-binding growth factor and is highly expressed by fibroblasts. CTGF plays a major role in angiogenesis and fibrosis. There is also growing evidence that CTGF may be the downstream autocrine mediator responsible for some of the cellular effects of TGF-beta. Since fibroblasts express tissue factor (TF) on their surface, and purified thrombin and TF-VIIa complex have been shown to up-regulate the gene expression of CTGF (J Biol Chem275:14632, 2000) experiments were conducted to evaluate the ability of HS-68 to support assembly of the prothrombinase complex, TF-FVIIa, thrombin generation and the effect of thrombin generation on CTGF expression. The role of TSP1 in these reactions was assessed as well. Thrombin generation was measured by the chromogenic substrate S-2238. Although the initial rates of the reactions are available we are presenting the end-point values of the reaction expressed in umol/L of pNA released per minute. All reaction mixtures were performed in the presence of 2mM Ca++. When HS-68 cells were preincubated with FVII (5 nM) prior to the addition of activated factor V (FVa, 45nM)), FX (5nM) and prothrombin (FII, 1.4 uM), thrombin was efficiently generated (282 umol/L pNA/min), indicating that FVII was activated by TF expressed by the cell and that the HS-68 cell membrane provided an ideal surface for the reaction to occur. The addition of FII, FV, FVII and FX to the reaction mixtures was an absolute requirement. When the reaction mixture was evaluated in the presence of FII, FV, FVII, FX and TFPI (8nM), there was a 70% reduction in thrombin production (86 umol/L pNA released) confirming the important role of TFPI in regulating the activity of the TF-FVIIa complex. The addition of TSP1 to the reaction mixture containing FII, FV, FVII and FX at concentrations found in plasma during the inflammatory response (20nM) enhanced the production of thrombin (327 umol/L pNA released per min) and neutralized the inhibitory effect of TFPI by 50% (171 umol/L pNA released per min). Therefore, TSP1 promotes thrombin generation by participating in the assembly of the prothrombinase complex on the surface of HS-68 cells and by neutralizing, in part, the inhibitory effect of TFPI on TF-VIIa complex. Finally, thrombin generation on the surface of HS-68 cells was associated with up-regulation of CTGF gene expression from the baseline value by 67% at 1hr and 72% by 2 hrs. In summary, we have identified on human fibroblasts a pathway previously shown to play an important role on human neutrophils and in an experimental model of inflammation. Our laboratory is currently characterizing the binding of TSP1 to this cell line and silencing the gene for TSP1 to test its potential therapeutic benefit in an experimental model of erosive arthritis and to further determine the role of TSP1 in this pathway.


2017 ◽  
Vol 312 (5) ◽  
pp. R643-R653 ◽  
Author(s):  
Emilio J. Vélez ◽  
Sheida Azizi ◽  
Esmail Lutfi ◽  
Encarnación Capilla ◽  
Alberto Moya ◽  
...  

Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings. Western blot results showed an increase in the proliferation marker proliferating cell nuclear antigen (PCNA), proteolytic system members calpain 1 and cathepsin D, as well as vascular endothelial growth factor protein expression. Moreover, quantitative real-time PCR data showed that exercise increased the gene expression of proteases (calpains, cathepsins, and members of the ubiquitin-proteasome system in the anterior muscle region) and the gene expression of the proliferation marker PCNA and the myogenic factor MyoD in the caudal area compared with control fish. Overall, these data suggest a differential response of the two muscle regions during swimming adaptation, with tissue remodeling and new vessel formation occurring in the anterior muscle and enhanced cell proliferation and differentiation occurring in the caudal area. In summary, the present study contributes to improving the knowledge of the role of proteolytic molecules and other myogenic factors in the adaptation of muscle to moderate sustained swimming in gilthead sea bream.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Matthew Mannarino ◽  
Hosni Cherif ◽  
Li Li ◽  
Kai Sheng ◽  
Oded Rabau ◽  
...  

Abstract Background There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. Methods Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). Results An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. Conclusions Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.


1996 ◽  
Vol 33 (5) ◽  
pp. 436-439 ◽  
Author(s):  
Peter J. Anderson ◽  
Anthony L.H., Moss

The incidence of dental abnormalities in the cleft lip and palate population has been reported to be much higher than in the normal population. The role of genes in the production of a cleft lip and palate, and dental anomalies is thought to be complex, with autosomal dominant, recessive, and x-linked genes all playing a role. Noncleft parents can carry some of the cleft lip and palate genes, which produce clinically subtle manifestations in their facial skeleton. The purpose of this study was to look for evidence of increased dental anomalies in the non-cleft parents of cleft lip and palate children. The dentitions of the parents of 60 children with different types of cleft lip and palate were examined prospectively to see whether or not they exhibited features found more readily in the cleft lip and palate rather than did the normal population. Their dentitions were studied to record the following dental features: congenitally missing teeth, supernumerary teeth, or morphologic changes of the crowns of the permanent teeth. The number and position of any frenal attachments were also recorded. The results of this study did not show any differences in incidence of dental anomalies from the noncleft population. There was no evidence to support the hypothesis that congenital absence of lateral incisors is a microform of cleft lip and palate. Further, these results also failed to reveal any consistent pattern in the number and position of frenal attachments.


Medicine ◽  
2021 ◽  
Vol 100 (21) ◽  
pp. e26101
Author(s):  
Yangyang Lin ◽  
Tao Song ◽  
Elsa M. Ronde ◽  
Gang Ma ◽  
Huiqin Cui ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A91-A91
Author(s):  
Jennifer Chew ◽  
Cedric Uytingco ◽  
Rapolas Spalinskas ◽  
Yifeng Yin ◽  
Joe Shuga ◽  
...  

BackgroundThe tumor microenvironment (TME) is composed of highly heterogeneous extracellular structures and cell types such as endothelial cells, immune cells, and fibroblasts that dynamically influence and communicate with each other. The constant interaction between a tumor and its microenvironment plays a critical role in cancer development and progression and can significantly affect a tumor’s response to therapy and capacity for multi-drug resistance. High resolution analyses of gene and protein expression with spatial context can provide deeper insights into the interactions between tumor cells and surrounding cells within the TME, where a better understanding of the underlying biology can improve treatment efficacy and patient outcomes. Here, we demonstrated the ability to perform streamlined multi-omic tumor analyses by utilizing the 10X Genomics Visium Spatial Gene Expression Solution for FFPE with multiplex protein enablement. This technique simultaneously assesses gene and protein expression to elucidate the immunological profile and microenvironment of different breast cancer samples in conjunction with standard pathological methods.MethodsSerial (5 µm) sections of FFPE human breast cancer samples were placed on Visium Gene Expression (GEX) slides. The Visium GEX slides incorporate ~5,000 molecularly barcoded, spatially encoded capture spots onto which tissue sections are placed, stained, and imaged. Following incubation with a human whole transcriptome, probe-based RNA panel and an immuno-oncology oligo-tagged antibody panel, developed with Abcam conjugated antibodies, the tissues are permeabilized and the representative probes are captured. Paired GEX and protein libraries are generated for each section and then sequenced on an Illumina NovaSeq at a depth of ~50,000 reads per spot. Resulting reads from both libraries are aligned and overlaid with H&E-stained tissue images, enabling analysis of both mRNA and protein expression. Additional analyses and data visualizations were performed on the Loupe Browser v4.1 desktop software.ConclusionsSpatial transcriptomics technology complements pathological examination by combining histological assessment with the throughput and deep biological insight of highly-multiplexed protein detection and RNA-seq. Taken together, our work demonstrated that Visium Spatial technology provides a spatially-resolved, multi-analyte view of the tumor microenvironment, where a greater understanding of cellular behavior in and around tumors can help drive discovery of new biomarkers and therapeutic targets.


2021 ◽  
Vol 9 (07) ◽  
pp. 882-906
Author(s):  
Payel Basu ◽  
◽  
Rani Somani ◽  
Deepti Jawa ◽  
Shipra Jaidka ◽  
...  

Cleft lip and palate is one of the most common congenital anomalies requiring multidisciplinary care. Such anomaly is associated with many problems such as impaired feeding, defective speech, hearing difficulties, malocclusion, dental abnormalities, gross facial deformity as well severe psychological problems. Cleft of the lip and palate is one of the complex conditions that occur at a functionally potential area in the orofacial region and also at such a crucial time that strategic interventions at the right age by the concerned specialists becomes the need of the hour. Pediatric dentist is an integral part of the cleft rehabilitative process right from the neonatal period upto the phase of permanent dentition. Being well versed with a childs growth and development, both physical and mental, a Pedodontist helps in restoring function and esthetics in a cleft child, in a most empathetic way. This article describes the enormous challenges faced by these innocent souls and the vital role played by a Pedodontist, to provide comprehensive cleft care, be it preventive, restorative, or interventional care, in order to achieve the best possible outcome and meaningfully improve their quality of life.


2008 ◽  
Vol 294 (5) ◽  
pp. F1174-F1184 ◽  
Author(s):  
Valentina Câmpean ◽  
Britta Karpe ◽  
Christian Haas ◽  
Akram Atalla ◽  
Harm Peters ◽  
...  

Capillary neoformation is important in repair of glomerular injury of various origins. VEGF was shown to be crucial for glomerular capillary repair in glomerulonephritis (GN). We reasoned that other angiogenic factors are likewise involved in glomerular capillary remodeling and found angiopoietin 1 and -2 (ANG1 and ANG2) mRNA to be upregulated in cDNA microarrays of microdissected glomeruli of anti-Thy1.1 GN of the rat. We then studied glomerular in situ gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 in the course of anti-Thy1.1 GN, which was induced by injection of OX-7 antibody. Animals were perfusion fixed at days 6 and 12 after GN induction and compared with nonnephritic controls receiving PBS. Capillary damage and repair were quantitatively analyzed using stereological techniques. Gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 was analyzed using real-time quantitative PCR from microdissected glomeruli, nonradioactive in situ hybridization, double immunofluorescence, and Western blot analysis. Glomerular capillarization assessed as length density was significantly lower at day 6 of anti-Thy1.1 GN than in controls; it was back to normal values at day 12. ANG1 and ANG2 gene expression was markedly upregulated at day 6 of the disease compared with controls. Protein expression of ANG1 and ANG2 was confined to podocytes and that of Tie-2 to endothelial cells. At day 12 of anti-Thy1.1 GN when capillary restoration was nearly completed, ANG1 and ANG2 gene expression returned to basal levels, whereas Tie-2 expression was still high. With the use of a combined molecular and in situ approach, the spatial and temporal gene and protein expression of the angiopoietins and their receptor was analyzed in anti-Thy1.1 GN. The results indicate that glomerular expression of ANG1 and ANG2 and Tie-2 is differentially regulated and may contribute to healing and endothelial cell stabilization in experimental GN.


Author(s):  
Pilar Martínez-Ten ◽  
Waldo Sepulveda ◽  
Amy E. Wong ◽  
Gabriele Tonni

Sign in / Sign up

Export Citation Format

Share Document