organotropic metastasis
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 15)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xiaoqing Han ◽  
Luopeng Bi ◽  
Yunyun Wu ◽  
Jiao Yan ◽  
Xiaqing Wu ◽  
...  

Abstract Premetastatic niche (PMN) is a prerequisite for initiation of tumor metastasis. Targeting prevention of PMN formation in distant organs is becoming a promising strategy to suppress metastasis of primary tumor. Based on “organotropic metastasis”, melanoma tends to metastasize to lungs, where granulocytic myeloid-derived suppressor cells (G-MDSCs) recruitment in lungs significantly contributes to the PMN formation. Herein, functional exosomes (GExoI) were designed to present pulmonary targeting peptide GFE1 on the membrane and load PI3Kγ inhibitor (IPI549) inside, aiming at suppressing postoperative lung metastasis of melanoma. In postoperative mice model, intravenously injected GExoI could significantly accumulate in lungs and release IPI549 to block G-MDSCs recruitment through interfering with CXCLs/CXCR2/PI3Kγ signaling. The increased percentages of CD4+ T cells and CD8+ T cells in lungs could transform microenvironment from immunosuppression to immunostimulation, leading to metastasis inhibition. This study suggests an effective anti-metastasis strategy of targeting prevention of PMN formation through specifically blocking G-MDSCs recruitment.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiangling Xiong ◽  
Lianlian Yan ◽  
Cheng Zou ◽  
Kai Wang ◽  
Mengjie Chen ◽  
...  

AbstractIntegrins are the adhesion molecules and transmembrane receptors that consist of α and β subunits. After binding to extracellular matrix components, integrins trigger intracellular signaling and regulate a wide spectrum of cellular functions, including cell survival, proliferation, differentiation and migration. Since the pattern of integrins expression is a key determinant of cell behavior in response to microenvironmental cues, deregulation of integrins caused by various mechanisms has been causally linked to cancer development and progression in several solid tumor types. In this review, we discuss the integrin signalosome with a highlight of a few key pro-oncogenic pathways elicited by integrins, and uncover the mutational and transcriptomic landscape of integrin-encoding genes across human cancers. In addition, we focus on the integrin-mediated control of cancer stem cell and tumor stemness in general, such as tumor initiation, epithelial plasticity, organotropic metastasis and drug resistance. With insights into how integrins contribute to the stem-like functions, we now gain better understanding of the integrin signalosome, which will greatly assist novel therapeutic development and more precise clinical decisions.


Author(s):  
Samuel Darkwah ◽  
Eun Jeong Park ◽  
Phyoe Kyawe Myint ◽  
Atsushi Ito ◽  
Michael G. Appiah ◽  
...  

Extracellular vesicles (EVs) have emerged as key players of intercellular communication and mediate crosstalk between tissues. Metastatic tumors release tumorigenic EVs, capable of pre-conditioning distal sites for organotropic metastasis. Growing evidence identifies muscle cell-derived EVs and myokines as potent mediators of cellular differentiation, proliferation, and metabolism. Muscle-derived EVs cargo myokines and other biological modulators like microRNAs, cytokines, chemokines, and prostaglandins hence, are likely to modulate the remodeling of niches in vital sites, such as liver and adipose tissues. Despite the scarcity of evidence to support a direct relationship between muscle-EVs and cancer metastasis, their indirect attribution to the regulation of niche remodeling and the establishment of pre-metastatic homing niches can be put forward. This hypothesis is supported by the role of muscle-derived EVs in findings gathered from other pathologies like inflammation and metabolic disorders. In this review, we present and discuss studies that evidently support the potential roles of muscle-derived EVs in the events of niche pre-conditioning and remodeling of metastatic tumor microenvironment. We highlight the potential contributions of the integrin-mediated interactions with an emerging myokine, irisin, to the regulation of EV-driven microenvironment remodeling in tumor metastasis. Further research into muscle-derived EVs and myokines in cancer progression is imperative and may hold promising contributions to advance our knowledge in the pathophysiology, progression and therapeutic management of metastatic cancers.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Wonyoung Kang ◽  
Leigh Maher ◽  
Michael Michaud ◽  
Seong-Woo Bae ◽  
Seongyeong Kim ◽  
...  

Abstract Background Gastric cancer metastasis is a highly fatal disease with a five-year survival rate of less than 5%. One major obstacle in studying gastric cancer metastasis is the lack of faithful models available. The cancer xenograft mouse models are widely used to elucidate the mechanisms of cancer development and progression. Current procedures for creating cancer xenografts include both heterotopic (i.e., subcutaneous) and orthotopic transplantation methods. Compared to the heterotopic model, the orthotopic model has been shown to be the more clinically relevant design as it enables the development of cancer metastasis. Although there are several methods in use to develop the orthotopic gastric cancer model, there is not a model which uses various types of tumor materials, such as soft tissues, semi-liquid tissues, or culture derivatives, due to the technical challenges. Thus, developing the applicable orthotopic model which can utilize various tumor materials is essential. Results To overcome the known limitations of the current orthotopic gastric cancer models, such as exposure of tumor fragments to the neighboring organs or only using firm tissues for the orthotopic implantation, we have developed a new method allowing for the complete insertion of soft tissue fragments or homogeneously minced tissues into the stomach submucosa layer of the immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse. With this completely-closed transplantation method, tumors with various types of tissue may be used to establish orthotopic gastric cancer models without the risks of exposure to nearby organs or cell leakage. This surgical procedure was highly reproducible in generating forty-eight mouse models with a surgery success rate of 96% and tumor formation of 93%. Among four orthotopic patient-derived xenograft (PDX) models that we generated in this study, we verified that the occurrence of organotropic metastasis in either the liver or peritoneal cavity was the same as that of the donor patients. Conclusion Here we describe a new protocol, step by step, for the establishment of orthotopic xenograft of gastric cancer. This novel technique will be able to increase the use of orthotopic models in broader applications for not only gastric cancer research but also any research related to the stomach microenvironment.


2020 ◽  
Author(s):  
Zhenzhen Mo ◽  
Jia Yang Alex Cheong ◽  
Lirong Xiang ◽  
Minh T. N. Le ◽  
Andrew Grimson ◽  
...  

2020 ◽  
Vol 47 (10) ◽  
pp. 8145-8157
Author(s):  
E. S. Grigoryeva ◽  
O. E. Savelieva ◽  
N. O. Popova ◽  
N. V. Cherdyntseva ◽  
V. M. Perelmuter

Sign in / Sign up

Export Citation Format

Share Document