scholarly journals Diagnostics of Es Layer Scintillation Observations Using FS3/COSMIC Data: Dependence on Sampling Spatial Scale

2021 ◽  
Vol 13 (18) ◽  
pp. 3732
Author(s):  
Lung-Chih Tsai ◽  
Shin-Yi Su ◽  
Chao-Han Liu ◽  
Harald Schuh ◽  
Jens Wickert ◽  
...  

The basic theory and experimental results of amplitude scintillation from GPS/GNSS radio occultation (RO) observations on sporadic E (Es) layers are reported in this study. Considering an Es layer to be not a “thin” irregularity slab on limb viewing, we characterized the corresponding electron density fluctuations as a power-law function and applied the Ryton approximation to simulate spatial spectrum of amplitude fluctuations. The scintillation index S4 and normalized signal amplitude standard deviation S2 are calculated depending on the sampling spatial scale. The theoretical results show that both S4 and S2 values become saturated when the sampling spatial scale is less than the first Fresnel zone (FFZ), and S4 and S2 values could be underestimated and approximately proportional to the logarithm of sampled spatial wave numbers up to the FFZ wave number. This was verified by experimental analyses using the 50 Hz and de-sampled FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) GPS RO data in the cases of weak, moderate, and strong scintillations. The results show that the measured S2 and S4 values have a very high correlation coefficient of >0.97 and a ratio of ~0.5 under both complete and undersampling conditions, and complete S4 and S2 values can be derived by dividing the measured undersampling S4 and S2 values by a factor of 0.8 when using 1-Hz RO data.

2020 ◽  
Author(s):  
Daniel Emmons

<p>A multiple phase screen model is used to simulate GPS radio occultation signals through varying sporadic-E layers.  The length, vertical extent, and plasma frequency of the sporadic-E layers are varied to analyze the effect on the signal received by a low earth orbiting satellite.  A nonlinear relationship between the maximum variance in the signal amplitude and the plasma frequency is observed.  For certain frequency ranges, the predictions match previous studies that have used the S<sub>4 </sub>scintillation index to predict fbEs values. Additionally, the spectra of the signals are analyzed as a function of the different parameters providing an alternative approach for extracting sporadic-E parameters from GPS radio occultation measurements. </p>


2017 ◽  
Vol 6 (4) ◽  
pp. 42-51 ◽  
Author(s):  
G. V. Jandieri ◽  
A. Ishimaru ◽  
B. Rawat ◽  
O. Kharshiladze ◽  
Z. Diasamidze

Second order statistical moments of the phase fluctuationsare obtained taking into account the boundary condition,diffraction effects and polarization coefficients of theordinary and extraordinary waves. The variance and thecorrelation function are calculated for arbitrary 3D spectralfunction of electron density fluctuations containing bothanisotropic Gaussian and power-law spectra; anisotropycoefficient and the orientation angle of elongated plasmairregularities. The phase scintillation index and thescintillation level are analyzed numerically. Maximum ofthe scintillation index for small-scale irregularities is in theinterval 0.2-0.3 corresponding to the moderate scintillationintensity, within the weak-scatter regime. Splashes arerevealed for different anisotropy factor of elongated largescaleirregularities varying orientation angle with respect tothe lines of force of geomagnetic field. Scintillation index iscalculated for small-scale irregularities using the “frozenin”assumption and taking into account movement of rigidirregularities. Log-log plots of the power spectrum of theintensity fluctuations have the same minimums satisfyingthe “standard relationship” of scattered ordinary andextraordinary waves. It was shown that the normalizedscintillation level growth in both non-fully-developeddiffraction pattern and in transition zone increasinganisotropy factor. Rising orientation angle scintillation leveldecreases and splashes arises in fully developedscintillation region.


2007 ◽  
Vol 7 (5) ◽  
pp. 625-628 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
O. Molchanov ◽  
P.-F. Biagi ◽  
M. Hayakawa

Abstract. We analyze variations of the LF subionospheric signal amplitude and phase from JJY transmitter in Japan (F=40 kHz) received in Petropavlovsk-Kamchatsky station during seismically quiet and active periods including also periods of magnetic storms. After 20 s averaging, the frequency range of the analysis is 0.28–15 mHz that corresponds to the period range from 1 to 60 min. Changes in spectra of the LF signal perturbations are found several days before and after three large earthquakes, which happened in November 2004 (M=7.1), August 2005 (M=7.2) and November 2006 (M=8.2) inside the Fresnel zone of the Japan-Kamchatka wavepath. Comparing the perturbed and background spectra we have found the evident increase in spectral range 10–25 min that is in the compliance with theoretical estimations on lithosphere-ionosphere coupling by the Atmospheric Gravity Waves (T>6 min). Similar changes are not found for the periods of magnetic storms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Alessio Pignalberi ◽  
Roberta Tozzi ◽  
Igino Coco ◽  
...  

AbstractThe present work focuses on the analysis of the scaling features of electron density fluctuations in the mid- and high-latitude topside ionosphere under different conditions of geomagnetic activity. The aim is to understand whether it is possible to identify a proxy that may provide information on the properties of electron density fluctuations and on the possible physical mechanisms at their origin, as for instance, turbulence phenomena. So, we selected about 4 years (April 2014–February 2018) of 1 Hz electron density measurements recorded on-board ESA Swarm A satellite. Using the Auroral Electrojet (AE) index, we identified two different geomagnetic conditions: quiet (AE < 50 nT) and active (AE > 300 nT). For both datasets, we evaluated the first- and second-order scaling exponents and an intermittency coefficient associated with the electron density fluctuations. Then, the joint probability distribution between each of these quantities and the rate of change of electron density index was also evaluated. We identified two families of plasma density fluctuations characterized by different mean values of both the scaling exponents and the considered ionospheric index, suggesting that different mechanisms (instabilities/turbulent processes) can be responsible for the observed scaling features. Furthermore, a clear different localization of the two families in the magnetic latitude—magnetic local time plane is found and its dependence on geomagnetic activity levels is analyzed. These results may well have a bearing about the capability of recognizing the turbulent character of irregularities using a typical ionospheric plasma irregularity index as a proxy.


2021 ◽  
Vol 922 (2) ◽  
pp. L31
Author(s):  
Siyao Xu ◽  
David H. Weinberg ◽  
Bing Zhang

Abstract Extragalactic fast radio bursts (FRBs) have large dispersion measures (DMs) and are unique probes of intergalactic electron density fluctuations. By using the recently released First CHIME/FRB Catalog, we reexamined the structure function (SF) of DM fluctuations. It shows a large DM fluctuation similar to that previously reported in Xu & Zhang, but no clear correlation hinting toward large-scale turbulence is reproduced with this larger sample. To suppress the distortion effect from FRB distances and their host DMs, we focus on a subset of CHIME catalog with DM < 500 pc cm−3. A trend of nonconstant SF and nonzero correlation function (CF) at angular separations θ less than 10° is seen, but with large statistical uncertainties. The difference found between SF and that derived from CF at θ ≲ 10° can be ascribed to the large statistical uncertainties or the density inhomogeneities on scales on the order of 100 Mpc. The possible correlation of electron density fluctuations and inhomogeneities of density distribution should be tested when several thousands of FRBs are available.


2021 ◽  
Vol 118 (3) ◽  
pp. e2016862118
Author(s):  
Duyu Chen ◽  
Yu Zheng ◽  
Lei Liu ◽  
Ge Zhang ◽  
Mohan Chen ◽  
...  

Disordered hyperuniformity (DHU) is a recently discovered novel state of many-body systems that possesses vanishing normalized infinite-wavelength density fluctuations similar to a perfect crystal and an amorphous structure like a liquid or glass. Here, we discover a hyperuniformity-preserving topological transformation in two-dimensional (2D) network structures that involves continuous introduction of Stone–Wales (SW) defects. Specifically, the static structure factor S(k) of the resulting defected networks possesses the scaling S(k)∼kα for small wave number k, where 1≤α(p)≤2 monotonically decreases as the SW defect concentration p increases, reaches α≈1 at p≈0.12, and remains almost flat beyond this p. Our findings have important implications for amorphous 2D materials since the SW defects are well known to capture the salient feature of disorder in these materials. Verified by recently synthesized single-layer amorphous graphene, our network models reveal unique electronic transport mechanisms and mechanical behaviors associated with distinct classes of disorder in 2D materials.


Sign in / Sign up

Export Citation Format

Share Document