aes encryption algorithm
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 25)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Farah Tawfiq Abdul Hussien ◽  
Abdul Monem S. Rahma ◽  
Hala Bahjat Abdul Wahab

Providing security for transmitted data through the e-commerce environment requires using a fast and high secure encryption algorithm. Balancing between the speed and the security degree is a problem that many of the encryption algorithms suffer from. Increasing the security degree requires increasing the level of complexity which results in increasing encryption time. On the other hand, increasing the algorithm speed may reduce the complexity degree which affects the security level. This paper aims to design an encryption algorithm that balances time and complexity (speed and security). This is done by suggesting a security environment that depends on creating and providing an agent software to be settled into each customer device that manages the purchase and security process without customer interference. The suggested encryption algorithm is applied within this environment. Several modifications are performed on the AES encryption algorithm. The AES was chosen due to its performance (security and speed), which makes it suitable for encrypting transmitted data over the Internet. These modifications involve adding preprocessing steps (padding and zigzag), eliminating Sub Byte step, and reducing the number of rounds. The experimental results showed that the suggested algorithm provides more security and speed in the encryption and decryption process. The randomness degree has increased by 29.5%. The efficiency is increased because the encryption and decryption times are reduced, as is the CPU usage. The throughput for the suggested algorithm is increased by 10% for the encryption process and is increased by 9.3% for the decryption process.


2021 ◽  
pp. 4110-4120
Author(s):  
Rawaa Hamza Ali ◽  
Jamal Mohamed Kadhim

In every system of security, to keep important data confidential, we need a high degree of protection. Steganography can be defined as a way of sending confidential texts through a secure medium of communications as well as protecting the information during the process of transmission. Steganography is a technology that is used to protect users' security and privacy. Communication is majorly achieved using a network through SMS, e-mail, and so on. The presented work suggested a technology of text hiding for protecting secret texts with Unicode characters. The similarities of glyphs  provided invisibility and increased the hiding capacity. In conclusion, the proposed method succeeded in securing confidential data and achieving high payload capacity by using the Huffman compression algorithm, which was implemented on an unlimited text length. In addition, this approach has the ability to hide a single bit in every digit or letter in the cover file. Also, the approach meets the cognitive transparency and does not make the modifications apparent on the original data. The method suggested in this work increases the security level through coding a secret message before embedding it within the cover text, with the use of the Advanced Encryption Standard (AES) algorithm.


2021 ◽  
pp. 2759-2770
Author(s):  
Meryam Saad

In recent years, the rapid development in the field of wireless technologies leaded to appear a new topic known as the Internet of things (IoT). The IoT applications can be found in various fields of our life such as smart home, health care, smart building, and etc. In all these applications the data collected from the real world are transmitted through the Internet, therefore these data have become a target of many attacks and hackers. So, a secure communication must be provided to protect the transmitted data from unauthorized access. This paper focuses on designing a secure IoT system to protect the sensing data. In this system, the security is provided by the use of Lightweight AES encryption algorithm to encrypt the data received from physical environment. The hardware used in this proposal is the Raspberry Pi 3 model B and two types of sensors. The LAES algorithm was embedded inside the Raspberry in order to protect the sensing data that comes from sensors connected to the Raspberry Pi before sending it through network. The analysis results show that the proposed IoT security system consumes less time in encryption/decryption and has high throughput when compared with others from related work. Its throughput is higher in about 19.24% than one system from the related studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Sondes Ajili ◽  
Mohamed Ali Hajjaji ◽  
Abdellatif Mtibaa

We propose a novel method for medical image watermarking in the DCT domain using the AES encryption algorithm. First, we decompose the original medical image into subblocks of 8 × 8. Besides, we apply the DCT and the quantization, respectively, to each subblock. However, in the DCT domain, an adequate choice of the DCT coefficients according to the quantization table in the middle frequencies band is performed. After that, we embed the patient’s data into the corresponding medical image. The insertion step is carried out just after the quantization phase. To increase the robustness, we encrypt the watermarked medical images by using the AES algorithm based on chaotic technique. Arnold’s cat map is used to shuffle the pixel values, and a chaotic Henon map is utilized to generate an aleatory sequence for the AES algorithm. The shuffled watermarked image is encrypted using the modified AES algorithm. The constant of Weber is used to choose the suitable visibility factor for embedding a watermark with high robustness. To control identification, after application of attacks, we use the serial turbo code for correction of the watermark to recover the data inserted. The average peak signal-to-noise ratio (PSNR) of the medical images obtained is 61,7769 dB. Experimental results demonstrate the robustness of the proposed schema against various types of attacks.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
He Xu ◽  
Xin Chen ◽  
Feng Zhu ◽  
Peng Li

The Radio Frequency Identification (RFID) technology has been integrated into healthcare systems for the purpose of improving healthcare management. However, people have concerns about the security and privacy of this kind of RFID systems. In order to solve the security problems faced by RFID-based healthcare systems, a novel security authentication protocol based on Physical Unclonable Function (PUF) and Advanced Encryption Standard (AES) encryption algorithm is designed. The protocol uses PUF technology to output unique and random responses to different excitation inputs, encrypts the authentication information sent by the tag, and uses the AES encryption algorithm to encrypt the authentication information between the cloud database and the reader. At the same time, in the authentication process, once the communicating entity completes the identity authentication of the other two entities, it immediately starts to update the key. The security analysis and formal analysis of BAN (proposed by Burrows et al.) logic prove the security and correctness of the protocol. Analysis results show that the computation cost and security performance of the proposed protocol are better than the compared protocols. Our findings will contribute to further enhancing the security for RFID healthcare systems.


2021 ◽  
Vol 5 (2) ◽  
pp. 22-36
Author(s):  
Elva Leka ◽  
Besnik Selimi

Academic degrees are subject to corruptions, system flaws, forgeries, and imitations. In this paper we propose to develop a blockchain smart contract-based application using Ethereum Platform, to store, distribute and verify academic certificates. It constitutes a trusted, decentralized certificate’s management system that can offer a unified viewpoint for students, academic institutions, as well as for other potential stakeholders such as employers. The article describes the implementation of three main parts of our proposed solution that includes: verification application, university interface and accreditor interface. This application avoids administrative barriers, makes the process of deployment, verification, and validation of certificates faster, efficient, and more secure. Additionally, it offers confidentiality of the data by using AES encryption algorithm before creating transactions and allows bulk submission of multiple academic certificates.


Author(s):  
Christos Stergiou ◽  
Kostas E. Psannis

Mobile cloud computing provides an opportunity to restrict the usage of huge hardware infrastructure and to provide access to data, applications, and computational power from every place and in any time with the use of a mobile device. Furthermore, MCC offers a number of possibilities but additionally creates several challenges and issues that need to be addressed as well. Through this work, the authors try to define the most important issues and challenges in the field of MCC technology by illustrating the most significant works related to MCC during recent years. Regarding the huge benefits offered by the MCC technology, the authors try to achieve a more safe and trusted environment for MCC users in order to operate the functions and transfer, edit, and manage data and applications, proposing a new method based on the existing AES encryption algorithm, which is, according to the study, the most relevant encryption algorithm to a cloud environment. Concluding, the authors suggest as a future plan to focus on finding new ways to achieve a better integration MCC with other technologies.


Sign in / Sign up

Export Citation Format

Share Document