isoaspartyl methyltransferase
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 9)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanaya Chatterjee ◽  
Gaurav Das ◽  
Surajit Ghosh ◽  
Pinak Chakrabarti

AbstractFibrillation of peptides and proteins is implicated in various neurodegenerative diseases and is a global concern. Aging leads to the formation of abnormal isoaspartate (isoAsp) residues from isomerization of normal aspartates in proteins, triggering fibril formation that leads to neurodegenerative diseases. Protein L-isoaspartyl methyltransferase (PIMT) is a repair enzyme which recognizes and converts altered isoAsp residues back to normal aspartate. Here we report the effect of gold nanoparticles (AuNPs) of different sizes on the structure and function of PIMT. Spherical AuNPs, viz. AuNS5, AuNS50 and AuNS100 (the number indicating the diameter in nm) stabilize PIMT, with AuNS100 exhibiting the best efficacy, as evident from various biophysical experiments. Isothermal titration calorimetry (ITC) revealed endothermic, but entropy driven mode of binding of PIMT with all the three AuNSs. Methyltransferase activity assay showed enhanced activity of PIMT in presence of all AuNSs, the maximum being with AuNS100. The efficacy of PIMT in presence of AuNS100 was further demonstrated by the reduction of fibrillation of Aβ42, the peptide that is implicated in Alzheimer’s disease. The enhancement of anti-fibrillation activity of PIMT with AuNS100 was confirmed from cell survival assay with PC12 derived neuronal cells against Aβ42 induced neurotoxicity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Remon Soliman ◽  
Maria Lorena Cordero-Maldonado ◽  
Teresa G. Martins ◽  
Mahsa Moein ◽  
Jean-François Conrotte ◽  
...  

Isomerization of l-aspartyl and l-asparaginyl residues to l-isoaspartyl residues is one type of protein damage that can occur under physiological conditions and leads to conformational changes, loss of function, and enhanced protein degradation. Protein l-isoaspartyl methyltransferase (PCMT) is a repair enzyme whose action initiates the reconversion of abnormal l-isoaspartyl residues to normal l-aspartyl residues in proteins. Many lines of evidence support a crucial role for PCMT in the brain, but the mechanisms involved remain poorly understood. Here, we investigated PCMT activity and function in zebrafish, a vertebrate model that is particularly well-suited to analyze brain function using a variety of techniques. We characterized the expression products of the zebrafish PCMT homologous genes pcmt and pcmtl. Both zebrafish proteins showed a robust l-isoaspartyl methyltransferase activity and highest mRNA transcript levels were found in brain and testes. Zebrafish morphant larvae with a knockdown in both the pcmt and pcmtl genes showed pronounced morphological abnormalities, decreased survival, and increased isoaspartyl levels. Interestingly, we identified a profound perturbation of brain calcium homeostasis in these morphants. An abnormal calcium response upon ATP stimulation was also observed in mouse hippocampal HT22 cells knocked out for Pcmt1. This work shows that zebrafish is a promising model to unravel further facets of PCMT function and demonstrates, for the first time in vivo, that PCMT plays a pivotal role in the regulation of calcium fluxes.


2020 ◽  
Vol 477 (22) ◽  
pp. 4453-4471
Author(s):  
Nitin Uttam Kamble ◽  
Manoj Majee

Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.


2020 ◽  
Vol 1864 (3) ◽  
pp. 129500 ◽  
Author(s):  
Tanaya Chatterjee ◽  
Gaurav Das ◽  
Barun K. Chatterjee ◽  
Jesmita Dhar ◽  
Surajit Ghosh ◽  
...  

2019 ◽  
Vol 295 (3) ◽  
pp. 783-799 ◽  
Author(s):  
Shraboni Ghosh ◽  
Nitin Uttam Kamble ◽  
Pooja Verma ◽  
Prafull Salvi ◽  
Bhanu Prakash Petla ◽  
...  

Stressful environments accelerate the formation of isoaspartyl (isoAsp) residues in proteins, which detrimentally affect protein structure and function. The enzyme PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) repairs other proteins by reverting deleterious isoAsp residues to functional aspartyl residues. PIMT function previously has been elucidated in seeds, but its role in plant survival under stress conditions remains undefined. Herein, we used molecular, biochemical, and genetic approaches, including protein overexpression and knockdown experiments, in Arabidopsis to investigate the role of PIMTs in plant growth and survival during heat and oxidative stresses. We demonstrate that these stresses increase isoAsp accumulation in plant proteins, that PIMT activity is essential for restricting isoAsp accumulation, and that both PIMT1 and PIMT2 play an important role in this restriction and Arabidopsis growth and survival. Moreover, we show that PIMT improves stress tolerance by facilitating efficient reactive oxygen species (ROS) scavenging by protecting the functionality of antioxidant enzymes from isoAsp-mediated damage during stress. Specifically, biochemical and MS/MS analyses revealed that antioxidant enzymes acquire deleterious isoAsp residues during stress, which adversely affect their catalytic activities, and that PIMT repairs the isoAsp residues and thereby restores antioxidant enzyme function. Collectively, our results suggest that the PIMT-mediated protein repair system is an integral part of the stress-tolerance mechanism in plants, in which PIMTs protect antioxidant enzymes that maintain proper ROS homeostasis against isoAsp-mediated damage in stressful environments.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0198266 ◽  
Author(s):  
Jeungjin Kim ◽  
Baihe Chen ◽  
Jean-Louis Bru ◽  
Eric Huynh ◽  
Mahsa Momen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document