methylglutaconic aciduria
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-13
Author(s):  
Malik Muhammad Sajjad ◽  
Sarah Bukhari ◽  
Omer Aziz

A Single nucleotide polymorphisms (SNPs) is a source variation in a genome. The AUH gene gives guidance about how to generate an enzyme named 3-methylglutaconyl-CoA hydratase. Mutations in AUH gene leads to 3-Methylglutaconic aciduria type I disease. The authors used multiple bioinformatics tools SIFT, Provean, PolyPhen, PHD-SNP, I-Mutant, ConSurf server and Project HOPE to isolate missense SNPs that should be deleterious to the structure and function of the AUH protein. This research aims to analyze the impact of missense SNPs on the structure and function of AUH protein. There have been a total of 259 Missense SNPs obtained, of which 13 mutations were identified as deleterious to the structure and function of the AUH protein. This is the first study in relation to AUH gene missense SNPs where most damaging SNPs associated with the AUH gene were examined using computational analysis. This research could be useful in designing specific medicines for treatment of genomic variation diseases.


FEBS Journal ◽  
2021 ◽  
Author(s):  
Dylan E. Jones ◽  
Irina Romenskaia ◽  
Dylan K. Kosma ◽  
Robert O. Ryan

Author(s):  
Catherine A. Ziats ◽  
William B. Burns ◽  
Matt L. Tedder ◽  
Laura Pollard ◽  
Tim Wood ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Julia T Warren ◽  
Ryan R Cupo ◽  
Peeradol Wattanasirakul ◽  
David Spencer ◽  
Adam E Locke ◽  
...  

Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis. Approximately one-third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 SCN cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase (ATPase) implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the ATP-binding pocket. Both genetic loss of CLPB and expression of CLPB variants results in impaired granulocytic differentiation of human hematopoietic progenitors and increased apoptosis. These CLPB variants associate with wildtype CLPB and inhibit its ATPase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.


Cureus ◽  
2020 ◽  
Author(s):  
Sai Chandar Dudipala ◽  
Prashanthi M ◽  
Krishna Chaithanya B ◽  
Laxman Kumar Chenalla

2020 ◽  
Vol 25 ◽  
pp. 100691
Author(s):  
Neli Bizjak ◽  
Mojca Zerjav Tansek ◽  
Magdalena Avbelj Stefanija ◽  
Barbka Repic Lampret ◽  
Ajda Mezek ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ryan R Cupo ◽  
James Shorter

Cells have evolved specialized protein disaggregases to reverse toxic protein aggregation and restore protein functionality. In nonmetazoan eukaryotes, the AAA+ disaggregase Hsp78 resolubilizes and reactivates proteins in mitochondria. Curiously, metazoa lack Hsp78. Hence, whether metazoan mitochondria reactivate aggregated proteins is unknown. Here, we establish that a mitochondrial AAA+ protein, Skd3 (human ClpB), couples ATP hydrolysis to protein disaggregation and reactivation. The Skd3 ankyrin-repeat domain combines with conserved AAA+ elements to enable stand-alone disaggregase activity. A mitochondrial inner-membrane protease, PARL, removes an autoinhibitory peptide from Skd3 to greatly enhance disaggregase activity. Indeed, PARL-activated Skd3 solubilizes α-synuclein fibrils connected to Parkinson’s disease. Human cells lacking Skd3 exhibit reduced solubility of various mitochondrial proteins, including anti-apoptotic Hax1. Importantly, Skd3 variants linked to 3-methylglutaconic aciduria, a severe mitochondrial disorder, display diminished disaggregase activity (but not always reduced ATPase activity), which predicts disease severity. Thus, Skd3 is a potent protein disaggregase critical for human health.


Author(s):  
Paweł Zapolnik ◽  
Jolanta Sykut-Cegielska ◽  
Antoni Pyrkosz

3-methylglutaconic aciduria includes a heterogeneous group of inborn errors of metabolism. The disease may have various clinical presentations, as can duplication 5q. We present the case of a 13-year-old boy with 3-methylglutaconic aciduria and duplication 5q. The main symptoms included myopathy, weakness, spastic paresis intensified mostly in the lower limbs, and intellectual disability. Additional studies showed elevated levels of 3-methylglutaconic acid in urine and ammonia in plasma. A duplication in region 5q23.3q31.1 was found in array-based comparative genomic hybridization. Next-generation sequencing did not reveal any pathological mutation. On the basis of the clinical picture and the results of biochemical and genetic tests 3-methylglutaconic aciduria type IV with duplication 5q was diagnosed.


Sign in / Sign up

Export Citation Format

Share Document