Inborn errors of metabolism associated with 3-methylglutaconic aciduria

Author(s):  
Dylan E. Jones ◽  
Emma Klacking ◽  
Robert O. Ryan
Author(s):  
Paweł Zapolnik ◽  
Jolanta Sykut-Cegielska ◽  
Antoni Pyrkosz

3-methylglutaconic aciduria includes a heterogeneous group of inborn errors of metabolism. The disease may have various clinical presentations, as can duplication 5q. We present the case of a 13-year-old boy with 3-methylglutaconic aciduria and duplication 5q. The main symptoms included myopathy, weakness, spastic paresis intensified mostly in the lower limbs, and intellectual disability. Additional studies showed elevated levels of 3-methylglutaconic acid in urine and ammonia in plasma. A duplication in region 5q23.3q31.1 was found in array-based comparative genomic hybridization. Next-generation sequencing did not reveal any pathological mutation. On the basis of the clinical picture and the results of biochemical and genetic tests 3-methylglutaconic aciduria type IV with duplication 5q was diagnosed.


2013 ◽  
Vol 36 (6) ◽  
pp. 923-928 ◽  
Author(s):  
Saskia B. Wortmann ◽  
Marinus Duran ◽  
Yair Anikster ◽  
Peter G. Barth ◽  
Wolfgang Sperl ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Michiel Bongaerts ◽  
Ramon Bonte ◽  
Serwet Demirdas ◽  
Edwin H. Jacobs ◽  
Esmee Oussoren ◽  
...  

Untargeted metabolomics is an emerging technology in the laboratory diagnosis of inborn errors of metabolism (IEM). Analysis of a large number of reference samples is crucial for correcting variations in metabolite concentrations that result from factors, such as diet, age, and gender in order to judge whether metabolite levels are abnormal. However, a large number of reference samples requires the use of out-of-batch samples, which is hampered by the semi-quantitative nature of untargeted metabolomics data, i.e., technical variations between batches. Methods to merge and accurately normalize data from multiple batches are urgently needed. Based on six metrics, we compared the existing normalization methods on their ability to reduce the batch effects from nine independently processed batches. Many of those showed marginal performances, which motivated us to develop Metchalizer, a normalization method that uses 10 stable isotope-labeled internal standards and a mixed effect model. In addition, we propose a regression model with age and sex as covariates fitted on reference samples that were obtained from all nine batches. Metchalizer applied on log-transformed data showed the most promising performance on batch effect removal, as well as in the detection of 195 known biomarkers across 49 IEM patient samples and performed at least similar to an approach utilizing 15 within-batch reference samples. Furthermore, our regression model indicates that 6.5–37% of the considered features showed significant age-dependent variations. Our comprehensive comparison of normalization methods showed that our Log-Metchalizer approach enables the use out-of-batch reference samples to establish clinically-relevant reference values for metabolite concentrations. These findings open the possibilities to use large scale out-of-batch reference samples in a clinical setting, increasing the throughput and detection accuracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruixue Zhang ◽  
Rong Qiang ◽  
Chengrong Song ◽  
Xiaoping Ma ◽  
Yan Zhang ◽  
...  

AbstractExpanded newborn screening facilitates early identification and intervention of patients with inborn errors of metabolism (IEMs), There is a lack of disease spectrum data for many areas in China. To determine the disease spectrum and genetic characteristics of IEMs in Xi'an city of Shaanxi province in northwest China, 146152 newborns were screening by MSMS from January 2014 to December 2019 and 61 patients were referred to genetic analysis by next generation sequencing (NGS) and validated by Sanger sequencing. Seventy-five newborns and two mothers were diagnosed with IEMs, with an overall incidence of 1:1898 (1:1949 without mothers). There were 35 newborns with amino acidemias (45.45%, 1:4176), 28 newborns with organic acidurias (36.36%, 1:5220), and 12 newborns and two mothers with FAO disorders (18.18%; 1:10439 or 1:12179 without mothers). Phenylketonuria and methylmalonic acidemia were the two most common disorders, accounting for 65.33% (49/75) of all confirmed newborn. Some hotspot mutations were observed for several IEMs, including PAH gene c.728G>A for phenylketonuria; MMACHC gene c.609G>A and c.567dupT, MMUT gene c.323G>A for methylmalonic acidemia and SLC25A13 gene c.852_855del for citrin deficiency. Our study provides effective clinical guidance for the popularization and application of expanded newborn screening, genetic screening, and genetic counseling of IEMs in this region.


JIMD Reports ◽  
2021 ◽  
Author(s):  
Noha Elserafy ◽  
Sue Thompson ◽  
Troy Dalkeith ◽  
Michael Stormon ◽  
Gordon Thomas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document