scholarly journals Dislocation structure of deformed olivine single crystals from conventional EBSD maps

2021 ◽  
Vol 48 (9) ◽  
Author(s):  
Ulrich Faul

AbstractDislocations, linear defects in a crystalline lattice characterized by their slip systems, can provide a record of grain internal deformation. Comprehensive examination of this record has been limited by intrinsic limitations of the observational methods. Transmission electron microscopy reveals individual dislocations, but images only a few square $$\upmu$$ μ m of sample. Oxidative decoration requires involved sample preparation and has uncertainties in detection of all dislocations and their types. The possibility of mapping dislocation density and slip systems by conventional (Hough-transform based) EBSD is investigated here with naturally and experimentally deformed San Carlos olivine single crystals. Geometry and dislocation structures of crystals deformed in orientations designed to activate particular slip systems were previously analyzed by TEM and oxidative decoration. A curvature tensor is calculated from changes in orientation of the crystal lattice, which is inverted to calculate density of geometrically necessary dislocations with the Matlab Toolbox MTEX. Densities of individual dislocation types along with misorientation axes are compared to orientation change measured on the deformed crystals. After filtering (denoising), noise floor and calculated dislocation densities are comparable to those reported from high resolution EBSD mapping. For samples deformed in [110]c and [011]c orientations EBSD mapping confirms [100](010) and [001](010), respectively, as the dominant slip systems. EBSD mapping thus enables relatively efficient observation of dislocation structures associated with intracrystalline deformation, both distributed, and localized at sub-boundaries, over substantially larger areas than has previously been possible. This will enable mapping of dislocation structures in both naturally and experimentally deformed polycrystals, with potentially new insights into deformation processes in Earth’s upper mantle.

1987 ◽  
Vol 91 ◽  
Author(s):  
J. S. Ahearn ◽  
P. Uppal

ABSTRACTMolecular beam epitaxy (MBE) growth of GaAs on Si was investigated for three Si substrate orientations: exact (100), 4° off (100) towards (011), and 4° off towards (010). Cross-sectional transmission electron microscopy (X-TEM) analysis indicated a high dislocation density at the GaAs-Si interface that decreased away from the interface. Changing the orientation significantly affected the dislocation arrangement in the films.In the exact (100) case, dislocations from different glide systems formed pyramids, and dislocation annihilation resulted in linear defects propagating to the bottom of pits on the GaAs surface. On Si substrates oriented 4° off of (100), dislocation pyramids were not observed which we attribute to the different stresses acting on different glide systems. Planar TEM sections indicated that the dislocation densities at th surfaces of the 2-μm-thick films were 8 × 108 /cm2 for exact (100), 3.4 × 108/cm2 for 4° off (100) towards (010), and 1.6 × 108/cm2 for 4° off towards (011) orientations. When etching was used to evaluate anti-phase domain (APD) density, the exact (100) and off (100) orientations toward (010) showed APD's in some areas; off (100) toward (011) orientations were apparently APD-free. Results of photoluminescence (PL) spectroscopy of each of the wafers showed marked differences in peak intensities for the different orientations. Secondary ion mass spectrometry (SIMS) showed that roughly 1/4 of a monolayer of Si was incorporated in the GaAs, mostly concentrated in the first 250 nm near the GaAs-Si interface.


1998 ◽  
Vol 552 ◽  
Author(s):  
Carola Knobloch ◽  
Karin Glock ◽  
Uwe Glatzel

ABSTRACTThe influence of crystal orientation on the high temperature creep behavior of Ni3(Al Ti Ta) was investigated by tensile creep testing under a constant load at a temperature of 1123K. The single crystals were oriented close to [001], [011], [111], [557] and [012]. The results show an increasing stationary creep rate from [111] over [011] to [001]. The evolution of the microstructure during creep deformation was studied, using transmission electron microscopy (TEM). Only few systems are active in the primary regime, whereas several slip systems operate in the secondary stage. Habit planes of dislocation pairs separated by an antiphase boundary were examined and compared with anisotropic elastic calculations, explaining the good creep response of [111] oriented single crystals.


1998 ◽  
Vol 552 ◽  
Author(s):  
L. Junker ◽  
M. Bartsch ◽  
U. Messerschmidt

ABSTRACTIn order to study the deformation processes of reaction-sintered and hot pressed MoSi2, compression tests have been performed and the microstructure of the deformed samples has been investigated by optical, scanning and transmission electron microscopy. At a low strain rate of 2.5× 10−7 S−1 permanent deformation has been achieved at 1250°C. The deformation behaviour is controlled by different microprocesses within different temperature ranges. Below 1000°C, hardening occurs beyond the upper and lower yield points. Inside the grains, dislocations glide at sufficiently high stresses in a homogeneous way as well as in localized slip bands. A plateau in the dependence of the yield stress on temperaturecorresponds to the flow stress anomaly of easy slip systems in single crystals. However, since there are not enough independent slip systems to satisfy the van Mises criterion, the material does not deform homogeneously in all grains. Intergranular and intragranular cracks, which are formed after the yield point, carry an increasing part of strain at decreasing temperatures. Above 1000°C, softening occurs after the yield point. A grain boundary phase flows viscously and carries most of the deformation. Since the grains do not deform themselves, intergranular cracks develop also at high temperatures.


Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


Author(s):  
A. Garg ◽  
R. D. Noebe ◽  
R. Darolia

Small additions of Hf to NiAl produce a significant increase in the high-temperature strength of single crystals. Hf has a very limited solubility in NiAl and in the presence of Si, results in a high density of G-phase (Ni16Hf6Si7) cuboidal precipitates and some G-platelets in a NiAl matrix. These precipitates have a F.C.C structure and nucleate on {100}NiAl planes with almost perfect coherency and a cube-on-cube orientation-relationship (O.R.). However, G-phase is metastable and after prolonged aging at high temperature dissolves at the expense of a more stable Heusler (β'-Ni2AlHf) phase. In addition to these two phases, a third phase was shown to be present in a NiAl-0.3at. % Hf alloy, but was not previously identified (Fig. 4 of ref. 2 ). In this work, we report the morphology, crystal-structure, O.R., and stability of this unknown phase, which were determined using conventional and analytical transmission electron microscopy (TEM).Single crystals of NiAl containing 0.5at. % Hf were grown by a Bridgman technique. Chemical analysis indicated that these crystals also contained Si, which was not an intentional alloying addition but was picked up from the shell mold during directional solidification.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


Author(s):  
J.G. Wen ◽  
K.K. Fung

Bi-based superconducting phases have been found to be members of a structural series represented by Bi2Sr2Can−1Cun−1On+4, n=1,2,3, and are referred to as 2201, 2212, 2223 phases. All these phases are incommensurate modulated structures. The super space groups are P2/b, NBbmb 2201, 2212 phases respectively. Pb-doped ceramic samples and single crystals and Y-doped single crystals have been studied by transmission electron microscopy.Modulated structures of all Bi-based superconducting phases are in b-c plane, therefore, it is the best way to determine modulated structure and c parameter in diffraction pattern. FIG. 1,2,3 show diffraction patterns of three kinds of modulations in Pb-doped ceramic samples. Energy dispersive X-ray analysis (EDAX) confirms the presence of Pb in the three modulated structures. Parameters c are 3 0.06, 38.29, 30.24Å, ie 2212, 2223, 2212 phases for FIG. 1,2,3 respectively. Their average space groups are all Bbmb.


Sign in / Sign up

Export Citation Format

Share Document