scholarly journals Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming

2016 ◽  
Vol 16 (22) ◽  
pp. 14343-14356 ◽  
Author(s):  
Manabu Abe ◽  
Toru Nozawa ◽  
Tomoo Ogura ◽  
Kumiko Takata

Abstract. This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. Arctic sea ice has been substantially retreating since the 1980s, particularly in September, under simulated global warming conditions. The simulated sea ice reduction is consistent with satellite observations. On the other hand, Arctic cloud cover has been increasing in October, with about a 1-month lag behind the sea ice reduction. The delayed response leads to extensive sea ice reductions because the heat and moisture fluxes from the underlying open ocean into the atmosphere are enhanced. Sensitivity experiments with the atmospheric part of MIROC5 clearly show that sea ice reduction causes increases in cloud cover. Arctic cloud cover increases primarily in the lower troposphere, but it decreases in the near-surface layers just above the ocean; predominant temperature rises in these near-surface layers cause drying (i.e., decreases in relative humidity), despite increasing moisture flux. Cloud radiative forcing due to increases in cloud cover in autumn brings an increase in the surface downward longwave radiation (DLR) by approximately 40–60 % compared to changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may bring further sea ice retreat and enhance the feedback processes of Arctic warming.

2016 ◽  
Author(s):  
Manabu Abe ◽  
Toru Nozawa ◽  
Tomoo Ogura ◽  
Kumiko Takata

Abstract. This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled Atmosphere-Ocean general circulation model MIROC5. Arctic sea ice has been shown to exhibit substantial reductions under simulated global warming conditions since the 1970s, particularly in September. This simulated reduction is consistent with satellite observation results. However, Arctic cloud cover increases significantly during October, leading to extensive reductions in sea ice because of the enhanced heat and moisture fluxes from the underlying ocean. Sensitivity experiments with the atmospheric model MIROC5 clearly show that sea ice reduction causes increased cloud cover. Increased cloud cover occurs primarily in the lower troposphere; however, clouds in the thin surface layers directly above the ocean decrease despite the increased moisture flux because the surface air temperature rises in these thin layers, causing the relative humidity to decrease. As cloud cover increases, the cloud radiative effect cause an increase in the surface downward longwave radiation (DLR) by approximately 40–60 % compared with changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may further melt the sea ice and enhance the feedback processes of Arctic warming.


2015 ◽  
Vol 15 (12) ◽  
pp. 17527-17552 ◽  
Author(s):  
M. Abe ◽  
T. Nozawa ◽  
T. Ogura ◽  
K. Takata

Abstract. This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. During simulated global warming since the 1970s, the Arctic sea ice extent has reduced substantially, particularly in September. This simulated reduction is consistent with satellite observation results. However, the Arctic cloud cover increases significantly during October at grids with significant reductions in sea ice because of the enhanced heat and moisture flux from the underlying ocean. Cloud fraction increases in the lower troposphere. However, the cloud fraction in the surface thin layers just above the ocean decreases despite the increased moisture because the surface air temperature rises strikingly in the thin layers and the relative humidity decreases. As the cloud cover increases, the cloud radiative effect in surface downward longwave radiation (DLR) increases by approximately 40–60 % compared to a change in clear-sky surface DLR. These results suggest that an increase in the Arctic cloud cover as a result of a reduction in sea ice could further melt the sea ice and enhance the feedback processes of the Arctic amplification in future projections.


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2008 ◽  
Vol 21 (18) ◽  
pp. 4799-4810 ◽  
Author(s):  
Axel J. Schweiger ◽  
Ron W. Lindsay ◽  
Steve Vavrus ◽  
Jennifer A. Francis

Abstract The connection between sea ice variability and cloud cover over the Arctic seas during autumn is investigated by analyzing the 40-yr ECMWF Re-Analysis (ERA-40) products and the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) Polar Pathfinder satellite datasets. It is found that cloud cover variability near the sea ice margins is strongly linked to sea ice variability. Sea ice retreat is linked to a decrease in low-level cloud amount and a simultaneous increase in midlevel clouds. This pattern is apparent in both data sources. Changes in cloud cover can be explained by changes in the atmospheric temperature structure and an increase in near-surface temperatures resulting from the removal of sea ice. The subsequent decrease in static stability and deepening of the atmospheric boundary layer apparently contribute to the rise in cloud level. The radiative effect of this change is relatively small, as the direct radiative effects of cloud cover changes are compensated for by changes in the temperature and humidity profiles associated with varying ice conditions.


2021 ◽  
pp. 1-64
Author(s):  
Yu-Chiao Liang ◽  
Claude Frankignoul ◽  
Young-Oh Kwon ◽  
Guillaume Gastineau ◽  
Elisa Manzini ◽  
...  

AbstractTo examine the atmospheric responses to Arctic sea-ice variability in the Northern Hemisphere cold season (October to following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily-varying sea-ice, sea-surface temperature, and radiative forcings prescribed during the 1979-2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multi-model ensemble mean (MMEM) shows decreasing sea-level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea-ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drives a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual co-variability between sea-ice extent in the Barents-Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the co-variability in MMEMs. The interannual sea-ice decline followed by a negative North Atlantic Oscillation-like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea-ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2021 ◽  
Author(s):  
Marco Morando

Abstract Climate Change is a widely debated scientific subject and Anthropogenic Global Warming is its main cause. Nevertheless, several authors have indicated solar activity and Atlantic Multi-decadal Oscillation variations may also influence Climate Change. This article considers the amplification of solar radiation’s and Atlantic Multi-decadal Oscillation’s variations, via sea ice cover albedo feedbacks in the Arctic regions, providing a conceptual advance in the application of Arctic Amplification for modelling historical climate change. A 1-dimensional physical model, using sunspot number count and Atlantic Multi-decadal Oscillation index as inputs, can simulate the average global temperature’s anomaly and the Arctic Sea Ice Extension for the past eight centuries. This model represents an innovative progress in understanding how existing studies on Arctic sea ice’s albedo feedbacks can help complementing the Anthropogenic Global Warming models, thus helping to define more precise models for future climate change.


Sign in / Sign up

Export Citation Format

Share Document