scholarly journals Spheroids of Bladder Smooth Muscle Cells for Bladder Tissue Engineering

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tim Gerwinn ◽  
Souzan Salemi ◽  
Lisa Krattiger ◽  
Daniel Eberli ◽  
Maya Horst

Cell-based tissue engineering (TE) has been proposed to improve treatment outcomes in end-stage bladder disease, but TE approaches with 2D smooth muscle cell (SMC) culture have so far been unsuccessful. Here, we report the development of primary bladder-derived 3D SMC spheroids that outperform 2D SMC cultures in differentiation, maturation, and extracellular matrix (ECM) production. Bladder SMC spheroids were compared with 2D cultures using live-dead staining, qRT-PCR, immunofluorescence, and immunoblotting to investigate culture conditions, contractile phenotype, and ECM deposition. The SMC spheroids were viable for up to 14 days and differentiated rather than proliferating. Spheroids predominantly expressed the late myogenic differentiation marker MyH11, whereas 2D SMC expressed more of the general SMC differentiation marker α-SMA and less MyH11. Furthermore, the expression of bladder wall-specific ECM proteins in SMC spheroids was markedly higher. This first establishment and analysis of primary bladder SMC spheroids are particularly promising for TE because differentiated SMCs and ECM deposition are a prerequisite to building a functional bladder wall substitute. We were able to confirm that SMC spheroids are promising building blocks for studying detrusor regeneration in detail and may provide improved function and regenerative potential, contributing to taking bladder TE a significant step forward.

2013 ◽  
Vol 36 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Nasser Shakhssalim ◽  
Javad Rasouli ◽  
Reza Moghadasali ◽  
Farzaneh Sharifi Aghdas ◽  
Mohammad Naji ◽  
...  

Purpose Numerous synthetic materials have been used for the bladder reconstruction; of which, nano-structured scaffolds are used as relevant implant to the bladder tissue-engineering. The aim of this study was to investigate the capacity of Poly ∊-caprolactone/poly-L-lactide acid (PCL/PLLA) nanofibrous scaffold, in supporting the maintenance and attachment of the human bladder smooth muscle cells (BdSMCs). Methods In this study, BdSMCs were isolated by enzymatic digestion method. Then, cells were seeded on PCL/PLLA nanofibrous scaffolds. Thereafter, cell attachment and expansion were analyzed by Hematoxylin and Eosin staining (H&E), immunohistochemistry, and scanning electron microscopy (SEM). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed that the nanostructured scaffold supported and maintained normal cell viability without inducing cytotoxic events. Results H&E staining, immunohistochemistry, and SEM showed that BdSMCs were attached and expanded on PCL/PLLA nanofibrous scaffolds after 14 days. Cell viability of BdSMCs on PCL/PLLA nanofibrous scaffolds increased during 14 days. Conclusion Our results showed that the novel porous nanofibrous electrospun scaffold is a biocompatible structure for attachment and adhesion of BdSMCs. However, there is not enough information on the stimulating effect of this nanofiber on the cells. Therefore, further in-vivo studies seem required to confirm such a nanofiber to be used in the bladder tissue-engineering.


2001 ◽  
Vol 711 ◽  
Author(s):  
Anil Thapa ◽  
Thomas J. Webster ◽  
Karen M. Haberstroh

ABSTRACTConventionally, studies investigating the design of synthetic bladder wall substitutes have involved polymers with micro-dimensional structures. Since the body is made up of nano-structured components (e.g., extracellular matrix proteins), our focus has been in the use of nano-structured polymers in order to design a three-dimensional synthetic bladder construct that mimics bladder tissue in vivo. In order to complete this task, we fabricated novel, nano-structured, biodegradable materials to serve as substrates for bladder tissue constructs and tested the cytocompatibility properties of these biomaterials in vitro. The results from our in vitro work to date have provided the first evidence that cellular responses (such as adhesion and proliferation) of bladder smooth muscle cells are enhanced as poly (lactic-co-glycolic acid) (PLGA) surface feature dimensions are reduced into the nanometer range.


2007 ◽  
Vol 7 ◽  
pp. 1230-1241 ◽  
Author(s):  
Jane M. Lewis ◽  
Earl Y. Cheng

Patients with spina bifida and a neurogenic bladder have traditionally been managed with clean intermittent catheterization and pharmacotherapy in order to treat abnormal bladder wall dynamics, protect the upper urinary tract from damage, and achieve urinary continence. However, some patients will fail this therapy and require surgical reconstruction in the form of bladder augmentation surgery using reconfigured intestine or stomach to increase the bladder capacity while reducing the internal storage pressure. Despite functional success of bladder augmentation in achieving a low pressure reservoir, there are several associated complications of this operation and patients do not have the ability to volitionally void. For these reasons, alternative treatments have been sought. Two exciting alternative approaches that are currently being investigated are tissue engineering and neuromodulation. Tissue engineering aims to create new bladder tissue for replacement purposes with both “seeded” and “unseeded” technology. Advances in the fields of nanotechnology and stem cell biology have further enhanced these tissue engineering technologies. Neuromodulation therapies directly address the root of the problem in patients with spina bifida and a neurogenic bladder, namely the abnormal relationship between the nerves and the bladder wall. These therapies include transurethral bladder electrostimulation, sacral neuromodulation, and neurosurgical techniques such as selective sacral rhizotomy and artificial somatic-autonomic reflex pathway construction. This review will discuss both tissue engineering techniques and neuromodulation therapies in more detail including rationale, experimental data, current status of clinical application, and future direction.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Bing Song ◽  
Wenkai Jiang ◽  
Amr Alraies ◽  
Qian Liu ◽  
Vijay Gudla ◽  
...  

Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.


2016 ◽  
Vol 18 (1) ◽  
Author(s):  
Marta Pokrywczynska ◽  
Daria Balcerczyk ◽  
Arkadiusz Jundzill ◽  
Maciej Gagat ◽  
Monika Czapiewska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document