scholarly journals Exploring Klebsiella pneumoniae in Healthy Poultry Reveals High Genetic Diversity, Good Biofilm-Forming Abilities and Higher Prevalence in Turkeys Than Broilers

2021 ◽  
Vol 12 ◽  
Author(s):  
Fiona V. Franklin-Alming ◽  
Håkon Kaspersen ◽  
Marit A. K. Hetland ◽  
Ragna-Johanne Bakksjø ◽  
Live L. Nesse ◽  
...  

Klebsiella pneumoniae is a well-studied human pathogen for which antimicrobial resistant and hypervirulent clones have emerged globally. K. pneumoniae is also present in a variety of environmental niches, but currently there is a lack of knowledge on the occurrence and characteristics of K. pneumoniae from non-human sources. Certain environmental niches, e.g., animals, may be associated with high K. pneumoniae abundance, and these can constitute a reservoir for further transmission of strains and genetic elements. The aim of this study was to explore and characterize K. pneumoniae from healthy broilers and turkeys. A total of 511 cecal samples (broiler n = 356, turkey n = 155), included in the Norwegian monitoring program for antimicrobial resistance (AMR) in the veterinary sector (NORM-VET) in 2018, were screened for K. pneumoniae by culturing on SCAI agar. K. pneumoniae was detected in 207 (40.5%) samples. Among the broiler samples, 25.8% were positive for K. pneumoniae, in contrast to turkey with 74.2% positive samples (p < 0.01). Antibiotic susceptibility testing was performed, in addition to investigating biofilm production. Whole genome sequencing was performed on 203 K. pneumoniae isolates, and analysis was performed utilizing comparative genomics tools. The genomes grouped into 66 sequence types (STs), with ST35, ST4710 and ST37 being the most prevalent at 13.8%, 7.4%, and 5.4%, respectively. The overall AMR occurrence was low, with only 11.3% of the isolates showing both pheno- and genotypic resistance. Genes encoding aerobactin, salmochelin or yersiniabactin were detected in 47 (23.2%) genomes. Fifteen hypervirulent genomes belonging to ST4710 and isolated from turkey were identified. These all encoded the siderophore virulence loci iuc5 and iro5 on an IncF plasmid. Isolates from both poultry species displayed good biofilm-forming abilities with an average of OD595 0.69 and 0.64. To conclude, the occurrence of K. pneumoniae in turkey was significantly higher than in broiler, indicating that turkey might be an important zoonotic reservoir for K. pneumoniae compared to broilers. Furthermore, our results show a highly diverse K. pneumoniae population in poultry, low levels of antimicrobial resistance, good biofilm-forming abilities and a novel hypervirulent ST4710 clone circulating in the turkey population.

2020 ◽  
Vol 8 (2) ◽  
pp. 222 ◽  
Author(s):  
Guido Di Donato ◽  
Francesca Marotta ◽  
Roberta Nuvoloni ◽  
Katiuscia Zilli ◽  
Diana Neri ◽  
...  

Campylobacter spp. are among the microorganisms most commonly associated with foodborne disease. Swine are known to be the main reservoir of Campylobacter coli and a possible source infection of humans as a result of carcass contamination at slaughter. The aim of this study was to evaluate the prevalence of C. coli contamination in swine carcasses, the antimicrobial resistance (AMR) patterns of isolates and the genetic diversity between strains obtained from swine and those isolated from humans. The prevalence of contamination was higher on carcasses (50.4%) than in faeces (32.9%). The 162 C. coli isolated from swine were examined by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The results of PFGE indicated a high genetic diversity among the isolates, with 25 different PFGE types. MLST assigned 51 sequence types (STs) to isolates. The most common genotype was ST-854 (16.04%), ST-9264 (10.49 %) and ST-1016 (6.08 %). Results of AMR showed a high resistance to quinolones and fluoroquinolones together with aminoglycosides and tetracycline. Many strains were multi-resistant with predominant R-type TeSCipNa (57%). Five resistance genes were detected along with mutation in the gyrA gene. A strong correlation between phenotypic and genotypic resistance was found for fluoroquinolone and tetracycline. Genetic profiles obtained in swine isolates were compared to those of 11 human strains. All human strains and 64.19% of animal strains (104/162) were assigned to the ST-828 clonal complex.


2014 ◽  
Vol 63 (10) ◽  
pp. 1316-1323 ◽  
Author(s):  
Alima Gharout-Sait ◽  
Samer-Ahmed Alsharapy ◽  
Lucien Brasme ◽  
Abdelaziz Touati ◽  
Rachida Kermas ◽  
...  

Ten carbapenem-resistant Enterobacteriaceae (eight Klebsiella pneumoniae isolates and two Enterobacter cloacae) isolates from Yemen were investigated using in vitro antimicrobial susceptibility testing, phenotypic carbapenemase detection, multilocus sequence typing (MLST) and replicon typing. Carbapenemase, extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance determinant genes were identified using PCR and sequencing. All of the 10 carbapenem-resistant Enterobacteriaceae were resistant to β-lactams, tobramycin, ciprofloxacin and cotrimoxazole. Imipenem, doripenem and meropenem MICs ranged from 2 to >32 mg l−1 and ertapenem MICs ranged from 6 to >32 mg l−1. All of the K. pneumoniae isolates showed ESBL activity in phenotypic tests. Genes encoding bla NDM were detected in all strains. All K. pneumoniae strains produced CTX-M-15 ESBL and SHV β-lactamases. TEM-1 β-lactamase was detected in seven isolates. Nine isolates were qnr positive including QnrB1, QnrA1 and QnrS1, and six isolates produced AAC-6′-Ib-cr. MLST identified five different sequence types (STs): ST1399, ST147, ST29, ST405 and ST340. Replicon typing showed the presence of IncFII1K plasmids in four transformants. To the best of our knowledge, this is the first report of NDM-1-producing Enterobacteriaceae isolates in Yemen.


2013 ◽  
Vol 7 (12) ◽  
pp. 922-928 ◽  
Author(s):  
Nguyen Hoang Thu Trang ◽  
Tran Vu Thieu Nga ◽  
James I Campbell ◽  
Nguyen Trong Hiep ◽  
Jeremy Farrar ◽  
...  

Background: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing oxyimino-β-lactams and inducing resistance to third generation cephalosporins. The genes encoding ESBLs are widespread and generally located on highly transmissible resistance plasmids. We aimed to investigate the complement of ESBL genes in E. coli and Klebsiella pneumoniae causing nosocomial infections in hospitals in Ho Chi Minh City, Vietnam. Methodology: Thirty-two non-duplicate isolates of E. coli and Klebsiella pneumoniae causing nosocomial infections, isolated between March and June 2010, were subjected to antimicrobial susceptibility testing. All isolates were PCR-amplified to detect the blaSHV, blaTEM and blaCTX-M ESBL genes and subjected to plasmid analysis. Results: We found that co-resistance to multiple antimicrobials was highly prevalent, and we report the predominance of the blaCTX-M-15 and blaCTX-M-27 genes, located on highly transmissible plasmids ranging from 50 to 170 kb in size. Conclusions: Our study represents a snap shot of ESBL-producing enteric bacteria causing nosocomial infections in this setting. We suggest that antimicrobial resistance in nosocomial E. coli and Klebsiella pneumoniae is rampant in Vietnam and ESBL organisms are widespread. In view of these data and the dramatic levels of antimicrobial resistance reported in Vietnam we advocate an urgent review of antimicrobial use in the Vietnamese healthcare system.


2021 ◽  
Vol 30 (1) ◽  
pp. 61-69
Author(s):  
Rochell Davis and Paul D. Brown

Background: Klebsiella pneumoniae is a major cause of hospital-acquired infections in Jamaica. Objective: We aimed to determine their antimicrobial resistance profiles and to assess biofilm formation in the presence of antibiotic, nicotine and amino acid starvation stresses. Methodology: Antimicrobial susceptibility and multiple antimicrobial resistance (MAR) index were determined for 23 K. pneumoniae strains. Biofilm production was evaluated in the presence of 50 μg/ml ceftazidime or gentamicin, 0–4 mg/ml nicotine, or 0.5 mg/ml serine hydroxamate (to induce amino acid starvation). Genetic relatedness, and the presence of type 3 fimbriae (mrkA) and determinants for extended spectrum β-lactamase and carbapenamases (bla-IMP, bla-VIM, bla-GIM and bla-SIM) were assessed by PCR-based amplification. Results: All strains were susceptible to imipenem (p<0.05); frequencies of resistance varied from 4% (for amikacin) and 8.7% (for meropenem) to over 30% for the other antimicrobials. About half of strains were resistant to ceftazidime, gentamicin and piperacillin. Mean MAR index was 0.31. The presence of antibiotics and nicotine at 2 and 4 mg/ml negatively affected biofilm formation for most strains. However, with amino acid starvation, almost 60% of strains retained medium or high biofilm production. Most strains harboured determinants for carbapenemase or metallo--lactamase, and one-third were PCRpositive for the OXA-1 gene. Strains were clustered into three groups based on ERICPCR analysis. Conclusion: These data suggest that certain antibiotics could inhibit biofilm production in K. pneumoniae even as multidrug resistance in this organism is evident. Further, this species has the propensity to harbour several genetic determinants for antimicrobial resistance.


Author(s):  
Haiyan Long ◽  
Ya Hu ◽  
Yu Feng ◽  
Zhiyong Zong

Klebsiella oxytoca complex comprises nine closely-related species causing human infections. We curated genomes labeled Klebsiella (n=14,256) in GenBank and identified 588 belonging to the complex, which were examined for precise species, sequence types, K- and O-antigen types, virulence and antimicrobial resistance genes. The complex and Klebsiella pneumoniae share many K- and O-antigen types. Of the complex, K. oxytoca and Klebsiella michiganensis appear to carry more virulence genes and be more commonly associated with human infections.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Yi-Tsung Lin ◽  
Yi-Hsiang Cheng ◽  
Chien Chuang ◽  
Sheng-Hua Chou ◽  
Wan-Hsin Liu ◽  
...  

ABSTRACT Hypervirulent Klebsiella pneumoniae strains are the major cause of liver abscesses throughout East Asia, and these strains are usually antibiotic susceptible. Recently, multidrug-resistant and hypervirulent (MDR-HV) K. pneumoniae strains have emerged due to hypervirulent strains acquiring antimicrobial resistance determinants or the transfer of a virulence plasmid into a classic MDR strain. In this study, we characterized the clinical and microbiological properties of K. pneumoniae liver abscess (KPLA) caused by MDR-HV strains in Taiwan. Patients with community onset KPLA were retrospectively identified at Taipei Veterans General Hospital during January 2013 to May 2018. Antimicrobial resistance mechanisms, capsular types, and sequence types were determined. MDR-HV strains and their parental antimicrobial-susceptible strains further underwent whole-genome sequencing (WGS) and in vivo mice lethality tests. Thirteen MDR-HV strains were identified from a total of 218 KPLA episodes. MDR-HV strains resulted in similar outcomes to antimicrobial-susceptible strains. All MDR-HV strains were traditional hypervirulent clones carrying virulence capsular types. The major resistance mechanisms were the overexpression of efflux pumps and/or the acquisition of ESBL or AmpC β-lactamase genes. WGS revealed that two hypervirulent strains had evolved to an MDR phenotype due to mutation in the ramR gene and the acquisition of an SHV-12-bearing plasmid, respectively. Both these MDR-HV strains retained high virulence compared to their parental strains. The spread of MDR-HV K. pneumoniae strains in the community raises significant public concerns, and measures should be taken to prevent the further acquisition of carbapenemase and other resistance genes among these strains in order to avoid the occurrence of untreatable KPLA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saliya Karymbaeva ◽  
Iryna Boiko ◽  
Susanne Jacobsson ◽  
Galina Mamaeva ◽  
Ainagul Ibraeva ◽  
...  

Abstract Background Gonorrhoea and antimicrobial resistance (AMR) in Neisseria gonorrhoeae are significant public health concerns globally. Nearly no gonococcal AMR data are available from Central Asia, and no data from Kyrgyzstan has been published. We examined, for the first time, AMR and molecular epidemiology of N. gonorrhoeae isolates cultured in Kyrgyzstan in 2012 and 2017, in order to inform refinements of the Kyrgyz national gonorrhoea management guidelines. Methods N. gonorrhoeae isolates cultured in 2012 (n = 84) and 2017 (n = 72) in Kyrgyzstan were examined. MICs of nine antimicrobials were determined using Etest and, where available, clinical breakpoints from the EUCAST were applied. N. gonorrhoeae multiantigen sequence typing (NG-MAST) was also performed. Results The overall resistance levels were high to ciprofloxacin (88.5%), tetracycline (56.9%), benzylpenicillin (39.1%), and kanamycin (4.7%). Resistance to cefixime (0.6%, n = 1 isolate), azithromycin (0.6%, n = 1), and gentamicin (0.6%, n = 1) was rare. No resistance to ceftriaxone or spectinomycin was found. However, the proportion of isolates with decreased susceptibility (MIC = 0.125 mg/L) to ceftriaxone and cefixime was 12.8 and 11.5%, respectively. Gonococcal isolates were assigned 69 sequence types, of which 52 (75.4%) were new. Conclusions The gonococcal population in Kyrgyzstan in 2012 and 2017 showed a high genetic diversity. Ceftriaxone, 500–1000 mg, in combination with azithromycin 2 g or doxycycline, particularly when chlamydial infection has not been excluded, should be recommended as empiric first-line treatment. Spectinomycin 2 g could be an alternative treatment, and given with azithromycin 2 g if pharyngeal gonorrhoea has not been excluded. Fluoroquinolones, aminoglycosides, benzylpenicillin, or tetracyclines should not be used for empiric treatment of gonorrhoea in Kyrgyzstan. Timely updating and high compliance to national gonorrhoea treatment guidelines based on quality-assured AMR data is imperative. Expanded and improved gonococcal AMR surveillance in Kyrgyzstan is crucial.


Author(s):  
Chirag Patel ◽  
M B Shah ◽  
Chirag Modi ◽  
Ankit Thakor

Background:  In critical care units, Ventilator-associated pneumonia (VAP) is a common device-associated infection in mechanically ventilated patients. Problem gets worst of associated with biofilm producing organism with higher antimicrobial resistance. The current study was carried out to observe the pattern of antimicrobial resistance, biofilm forming capacity of isolates causing Ventilator-associated pneumonia and other risk factors associated with VAP patients in intensive care units of Shree Krishna Hospital, Karamsad. Methodology:  97 total tracheal aspirate culture isolates recovered from 83 mechanically ventilated patients diagnosed to be suffering from VAP as per NHSN definition, admitted in various ICUs of Shree Krishna Hospital, Karamsad during the study duration were included in the study. Relevant clinical history of the patients and other details taken for various patient variable factors like age, gender, co-morbid conditions, indoor days, ventilator days, final patient outcome and other lab based investigations done as indicator of active pneumonia or sepsis from the electronic hospital database available on hospital information system. The tracheal aspirate culture isolates were then tested for antimicrobial susceptibility testing by Vitek2compact and in-vitro biofilm production assay using microtitre plate method. Objective of the present study was to determine the incidence of antimicrobial resistance, biofilm forming capacity of VAP pathogens, to determine risk factors associated and final outcome in VAP patients infected with biofilm forming pathogens. Chi-square test was used to check the relation between the categorical variables while t test was applied in case of continuous variables. A p value less than 0.05 was considered as statistically significant. Results:  Out of total 83 patients of VAP, 97 isolates recovered in tracheal aspirate culture. Out of total 83 patients, 42 patients (49 isolates) were found Biofilm producer (BFP) and 41 patients (48 isolates) were found Biofilm non-producer (BFNP). Out of 97 culture total isolates, the most common organisms grew were Klebsiella pneumoniae (29 isolates), Acinetobacter baumani (28 isolates) and Pseudomonas aeruginosa (19 isolates) apart from them lesser number of isolates of Staphylococcus aureus (6), Escherichia coli (5), Pantoea spp. (2), Serretia marcescens (2), Pseudomonas putida (1), Sphingomonas paucimobilis (1), Stenotrophomonas maltophila (1), Enterococcus faecium (1), Candida famata (1) and Candida tropicalis (1). The antimicrobial resistance was compared in three major pathogen between BFP and BFNP isolates, i.e. Klebsiella pneumoniae, Acinetobacter baumani and Pseudomonas aeruginosa, which was found to be statistically insignificant. Mortality was recorded higher in BFP patients (16.67%) compared to BFNP patients (7.3%) of VAP, but statistically it was not found to be significant (p value > 0.05). Conclusions:  Incidence of BFP and BFNP associated VAP seen 50.51% and 49.49% respectively out of total 97 isolates. Biofilm forming pathogen causing VAP may not influence the outcome of the patient but, biofilm producer pathogens continue to be associated with pathogens causing VAP in significant amount of total cases. Typical hospital acquired strains like Klebsiella pneumoniae, Acinetobacter baumani and Pseudomonas aeruginosa is recorded frequently compared to other pathogens. Key words: Intensive Care Unit, anti-microbial resistance, VAP, Bio film, Health care associated infection, Indwelling device associated infection.


2021 ◽  
Vol 9 (1) ◽  
pp. 104
Author(s):  
Live L. Nesse ◽  
Solveig S. Mo ◽  
Silje N. Ramstad ◽  
Ingun L. Witsø ◽  
Camilla Sekse ◽  
...  

Extended-spectrum cephalosporin-resistant Escherichia coli (ESCR E. coli) with plasmids carrying the blaCMY-2 resistance gene have been isolated from the Norwegian broiler production chain through the Norwegian monitoring program for antimicrobial resistance in animals, food and feed, NORM-VET. The aim of the present study was to investigate the biofilm forming abilities of these strains, and in particular to see whether these might be influenced by the carriage of blaCMY-2 plasmids. The ESCR E. coli from the broiler production chain displayed relatively low biofilm forming abilities in the crystal violet biofilm assay as compared to quinolone-resistant E. coli (QREC) from the same population (mean ± SD = 0.686 ± 0.686 vs. 1.439 ± 0.933, respectively). Acquisition of two different blaCMY-2 plasmids by QREC strains reduced their biofilm production in microtiter plates, but not their biofilm production on Congo Red agar plates. Furthermore, motility was reduced, but not planktonic growth. We hypothesize that genes carried by these plasmids may have caused the observed reduction in biofilm formation, possibly mediated through changes in flagellar expression or function. Furthermore, this may help explain the different biofilm forming abilities observed between ESCR E. coli and QREC. The results also indicate that the risk of biofilm reservoirs of antimicrobial resistant E. coli on in the broiler production is lower for ESCR E. coli than for QREC.


2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Magdalena Lopatek ◽  
Kinga Wieczorek ◽  
Jacek Osek

ABSTRACTVibrio parahaemolyticusis a widespread bacterium in the marine environment and is responsible for gastroenteritis in humans. Foodborne infections are mainly associated with the consumption of contaminated raw or undercooked fish and shellfish. The aim of this study was to determine the antimicrobial resistance, virulence factors, and genetic profiles ofV. parahaemolyticusisolates from seafood originating from different countries. A total of 104 (17.5%) isolates were recovered from 595 analyzed samples. The isolates were tested for the presence of thetdhandtrhgenes, involved in the pathogenesis ofV. parahaemolyticusinfections in humans, and these genes were detected in 3 (2.9%) and 11 (10.6%) isolates, respectively. Thetrh-positive isolates also possessed theuregene, which is responsible for urease production. Moreover, the activity of protease A was identified in allV. parahaemolyticusstrains. Antimicrobial resistance revealed that most isolates were resistant to ampicillin (75.0%) and streptomycin (68.3%), whereas all strains were sensitive to chloramphenicol and tetracyclines. Most of the isolates (55.8%) showed resistance against two classes of antimicrobials, mainly to ampicillin and streptomycin (46.2%). Only one isolate displayed a multiresistant pattern. Genotypic analysis ofV. parahaemolyticusrevealed a high degree of diversity among the isolates tested. The pulsed-field gel electrophoresis (PFGE) method distinguished 73 clonal groups, and the most numerous group consisted of 7 strains. Sequencing by the multilocus sequence typing (MLST) method showed 76 sequence types (STs), of which ST481 and ST1361 were most frequently identified. In addition, 51 (67.1%) new sequence types were discovered and added to the PubMLST international database.IMPORTANCEThe presence ofV. parahaemolyticusin seafood may pose a risk for consumers, especially in countries where shellfish are eaten raw. In recent years, a significant increase of food poisoning caused by these bacteria has been also observed in Europe. Our results highlight the high level ofV. parahaemolyticuscontamination of seafood, along with the isolates being potentially pathogenic for humans. However, the first-line antimicrobials, such as tetracyclines and fluoroquinolones, remained highly effective againstV. parahaemolyticus. The monitoring of antimicrobial resistance of isolates is important to ensure the high efficacy in the treatment of human infections. Most ofV. parahaemolyticusstrains possessed new sequence types (STs), which showed the high genetic diversity of the isolates tested.


Sign in / Sign up

Export Citation Format

Share Document