scholarly journals Metabolic profiling of maize seeds with both insect- and herbicide-resistance genes (cry1Ab and epsps), dual herbicide-resistance genes (epsps and pat), and natural genotypic varieties

Author(s):  
Weixiao Liu ◽  
Mei Dong ◽  
Lixia Meng ◽  
Yusong Wan ◽  
Wujun Jin

Abstract Background Widely targeted metabolomics was applied to estimate the differences in the metabolite profiles of maize seeds from 3 natural genotypic varieties and 4 genetically modified (GM) lines. Results Pairwise comparison with their isogenic controls revealed 71, 121, 43 and 95 differentially accumulated metabolites (DAMs) in GM maize seeds of C0030.2.4, C0030.3.5, C0010.1.1 and C0010.3.1, respectively. KEGG pathway enrichment analysis showed that most of these DAMs participated in the biosynthesis of secondary metabolites and purine metabolism in GM maize C0030.2.4 and C0030.3.5, but participated in tryptophan metabolism and 2-oxocarboxylic acid metabolism in C0010.3.1 seeds and in metabolic pathways and the biosynthesis of secondary metabolites in C0010.1.1 seeds. The data also showed that the differences in metabolite accumulation, both total DAMs and co-DAMs, among the different natural genotypic varieties (418 DAMs and 39 co-DAMs) were greater than those caused by genetic modification (330 DAMs and 3 co-DAMs). Conclusions None of the DAMs were identified as new or unintended, showing only changes in abundance in the studied maize seeds. The metabolite profile differences among the 3 non-GM lines were more notable than those among GM lines. Different genetic backgrounds affect metabolite profiling more than gene modification itself. Graphic abstract

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Wanyun Ma ◽  
Lili Xu ◽  
Shiwei Gao ◽  
Xingning Lyu ◽  
Xiaolei Cao ◽  
...  

AbstractThe interplay between melatonin and ethylene in the regulation of fruit metabolism and the underlying molecular mechanism of this interplay remain largely unclear. Here, widely targeted metabolomics analysis revealed a total of 464 metabolites present in berry skin. Among them, 27 significantly differentially accumulated metabolites (DAMs) were produced in response to melatonin treatment in the presence or absence of 1-MCP. Most of the DAMs were secondary metabolites, including flavonoids, phenolic acids, stilbenes, and flavonols. Additionally, the accumulation of 25 DAMs was regulated by melatonin via ethylene. RNA-seq analysis indicated that melatonin primarily regulated the pathways of plant hormone signal transduction and secondary metabolite biosynthesis via ethylene. Gene-metabolite association analysis showed that melatonin regulated the expression of the VvSTS1, VvF3H, VvLAR2, and VvDFR genes, suggesting that these genes may play key roles in regulating secondary metabolites in the skin; additionally, VvMYB14 and VvACS1 were suggested to be involved in the regulation of secondary metabolites. Further experiments revealed that melatonin induced the expression of VvMYB14 and that VvMYB14 increased ethylene production by transcriptionally activating VvACS1, thereby affecting the accumulation of secondary metabolites. Collectively, melatonin promotes ethylene biosynthesis and alters secondary metabolite accumulation through the regulation of VvACS1 by VvMYB14.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jialin Du ◽  
Weiwei Ma ◽  
Yi Li ◽  
Xu Lu ◽  
Zhaopeng Geng ◽  
...  

In vitro propagation technology with plant growth regulators (PGRs) is generally applied in the cultivation of Scabiosa tschiliensis, which can solve collection difficulties and limited resources of S. tschiliensis. Nevertheless, comprehensive metabolomic evaluation on S. tschiliensis with PGR effects is still lacking. In this work, a non-targeted metabolomics approach, coupled with statistical and pathway enrichment analysis, was used to assess the regulatory influences of 6-benzylaminopurine (6-BA) and kinetin (KT) applied in S. tschiliensis. The results showed that the PGRs affect metabolism differentially, and the addition of 6-BA and KT can increase different secondary metabolites. In the two PGR groups, some primary metabolites such as L-phenylalanine, L-tyrosine, L-arginine, L-asparagine, and D-proline were significantly reduced. We suspect that under the action of PGRs, these decreased amino acids are derived into secondary metabolites such as umbelliferone, chlorogenic acid, and glutathione. Additionally, some of those secondary metabolites have a biological activity and can also promote the plant growth. Our results provide a basis for the targeted cultivation and utilization of S. tschiliensis, especially the expression of metabolites related to PGR application.


2013 ◽  
Vol 40 (12) ◽  
pp. 1256
Author(s):  
XiaoDong JIA ◽  
XiuJie CHEN ◽  
Xin WU ◽  
JianKai XU ◽  
FuJian TAN ◽  
...  

2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2019 ◽  
Vol 19 (12) ◽  
pp. 1463-1472 ◽  
Author(s):  
Nil Kiliç ◽  
Yasemin Ö. Islakoğlu ◽  
İlker Büyük ◽  
Bala Gür-Dedeoğlu ◽  
Demet Cansaran-Duman

Objective: Breast Cancer (BC) is the most common type of cancer diagnosed in women. A common treatment strategy for BC is still not available because of its molecular heterogeneity and resistance is developed in most of the patients through the course of treatment. Therefore, alternative medicine resources as being novel treatment options are needed to be used for the treatment of BC. Usnic Acid (UA) that is one of the secondary metabolites of lichens used for different purposes in the field of medicine and its anti-proliferative effect has been shown in certain cancer types, suggesting its potential use for the treatment. Methods: Anti-proliferative effect of UA in BC cells (MDA-MB-231, MCF-7, BT-474) was identified through MTT analysis. Microarray analysis was performed in cells treated with the effective concentration of UA and UA-responsive miRNAs were detected. Their targets and the pathways that they involve were determined using a miRNA target prediction tool. Results: Microarray experiments showed that 67 miRNAs were specifically responsive to UA in MDA-MB-231 cells while 15 and 8 were specific to BT-474 and MCF-7 cells, respectively. The miRNA targets were mostly found to play role in Hedgehog signaling pathway. TGF-Beta, MAPK and apoptosis pathways were also the prominent ones according to the miRNA enrichment analysis. Conclusion: The current study is important as being the first study in the literature which aimed to explore the UA related miRNAs, their targets and molecular pathways that may have roles in the BC. The results of pathway enrichment analysis and anti-proliferative effects of UA support the idea that UA might be used as a potential alternative therapeutic agent for BC treatment.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qinghong Shi ◽  
Hanxin Yao

Abstract Background Our study aimed to investigate signature RNAs and their potential roles in type 1 diabetes mellitus (T1DM) using a competing endogenous RNA regulatory network analysis. Methods Expression profiles of GSE55100, deposited from peripheral blood mononuclear cells of 12 T1DM patients and 10 normal controls, were downloaded from the Gene Expression Omnibus to uncover differentially expressed long non-coding RNAs (lncRNAs), mRNAs, and microRNAs (miRNAs). The ceRNA regulatory network was constructed, then functional and pathway enrichment analysis was conducted. AT1DM-related ceRNA regulatory network was established based on the Human microRNA Disease Database to carry out pathway enrichment analysis. Meanwhile, the T1DM-related pathways were retrieved from the Comparative Toxicogenomics Database (CTD). Results In total, 847 mRNAs, 41 lncRNAs, and 38 miRNAs were significantly differentially expressed. The ceRNA regulatory network consisted of 12 lncRNAs, 10 miRNAs, and 24 mRNAs. Two miRNAs (hsa-miR-181a and hsa-miR-1275) were screened as T1DM-related miRNAs to build the T1DM-related ceRNA regulatory network, in which genes were considerably enriched in seven pathways. Moreover, three overlapping pathways, including the phosphatidylinositol signaling system (involving PIP4K2A, INPP4A, PIP4K2C, and CALM1); dopaminergic synapse (involving CALM1 and PPP2R5C); and the insulin signaling pathway (involving CBLB and CALM1) were revealed by comparing with T1DM-related pathways in the CTD, which involved four lncRNAs (LINC01278, TRG-AS1, MIAT, and GAS5-AS1). Conclusion The identified signature RNAs may serve as important regulators in the pathogenesis of T1DM.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 713
Author(s):  
Muna Ali Abdalla ◽  
Fengjie Li ◽  
Arlette Wenzel-Storjohann ◽  
Saad Sulieman ◽  
Deniz Tasdemir ◽  
...  

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (−S). Significant differences were observed under −S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1821
Author(s):  
Ujjwal Mukund Mahajan ◽  
Ahmed Alnatsha ◽  
Qi Li ◽  
Bettina Oehrle ◽  
Frank-Ulrich Weiss ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Developing biomarkers for early detection and chemotherapeutic response prediction is crucial to improve the dismal prognosis of PDAC patients. However, molecular cancer signatures based on transcriptome analysis do not reflect intratumoral heterogeneity. To explore a more accurate stratification of PDAC phenotypes in an easily accessible matrix, plasma metabolome analysis using MxP® Global Profiling and MxP® Lipidomics was performed in 361 PDAC patients. We identified three metabolic PDAC subtypes associated with distinct complex lipid patterns. Subtype 1 was associated with reduced ceramide levels and a strong enrichment of triacylglycerols. Subtype 2 demonstrated increased abundance of ceramides, sphingomyelin and other complex sphingolipids, whereas subtype 3 showed decreased levels of sphingolipid metabolites in plasma. Pathway enrichment analysis revealed that sphingolipid-related pathways differ most among subtypes. Weighted correlation network analysis (WGCNA) implied PDAC subtypes differed in their metabolic programs. Interestingly, a reduced expression among related pathway genes in tumor tissue was associated with the lowest survival rate. However, our metabolic PDAC subtypes did not show any correlation to the described molecular PDAC subtypes. Our findings pave the way for further studies investigating sphingolipids metabolisms in PDAC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Yuan ◽  
Shenqiang Hu ◽  
Liang Li ◽  
Chunchun Han ◽  
Hehe Liu ◽  
...  

Abstract Background Despite their important functions and nearly ubiquitous presence in cells, an understanding of the biology of intracellular lipid droplets (LDs) in goose follicle development remains limited. An integrated study of lipidomic and transcriptomic analyses was performed in a cellular model of stearoyl-CoA desaturase (SCD) function, to determine the effects of intracellular LDs on follicle development in geese. Results Numerous internalized LDs, which were generally spherical in shape, were dispersed throughout the cytoplasm of granulosa cells (GCs), as determined using confocal microscopy analysis, with altered SCD expression affecting LD content. GC lipidomic profiling showed that the majority of the differentially abundant lipid classes were glycerophospholipids, including PA, PC, PE, PG, PI, and PS, and glycerolipids, including DG and TG, which enriched glycerophospholipid, sphingolipid, and glycerolipid metabolisms. Furthermore, transcriptomics identified differentially expressed genes (DEGs), some of which were assigned to lipid-related Gene Ontology slim terms. More DEGs were assigned in the SCD-knockdown group than in the SCD-overexpression group. Integration of the significant differentially expressed genes and lipids based on pathway enrichment analysis identified potentially targetable pathways related to glycerolipid/glycerophospholipid metabolism. Conclusions This study demonstrated the importance of lipids in understanding follicle development, thus providing a potential foundation to decipher the underlying mechanisms of lipid-mediated follicle development.


Sign in / Sign up

Export Citation Format

Share Document