scholarly journals Fault slip potential induced by fluid injection in the Matouying EGS field, Tangshan seismic region, North China

2022 ◽  
Author(s):  
Chengjun Feng ◽  
Guangliang Gao ◽  
Shihuai Zhang ◽  
Dongsheng Sun ◽  
Siyu Zhu ◽  
...  

Abstract. The Tangshan region is one of the most seismically active areas in the North China, and the 1976 M 7.8 earthquake occurred on July 28th near the Tangshan fault zone. The Matouying Enhanced Geothermal Systems (EGS) field is located ~90 km away from Tangshan City. Since the late 2020, preliminary hydraulic stimulation tests have been conducted at depths of ~3965–4000 m. Fluid injection into geothermal reservoir facilitates heat exchanger system. However, fluid injection may also induce earthquakes. In anticipation of the EGS operation at the Matouying uplift, it is essential to assess how the fault slip potential of the nearby active and quiescent faults will change in the presence of fluid injection. In this study, we first characterize the ambient stress field in the Tangshan region by performing stress tensor inversions using 98 focal mechanism data (ML ≥ 2.5). Then, we estimate the principal stress magnitudes near the Matouying EGS field by analyzing in situ stress measurements at shallow depths (~600–1000 m). According to these data, we perform a quantitative risk assessment using the Mohr-Coulomb framework in order to evaluate how the main active faults might respond to hypothetical injected-related pore pressure increases due to the upcoming EGS production. Our results mainly show that most earthquakes in the Tangshan seismic region have occurred on the faults that have relatively high fault slip potential in the present ambient stress field. At well distances of less than 15 km, the probabilistic fault slip potential on most of the boundary faults increase with continuing fluid injection over time, especially on these faults with well distances of ~6–10 km. The probabilistic fault slip potential increases linearly with the fluid injection rate. However, the FSP values decrease exponentially with increased unit permeability. The case study of the Matouying EGS field has important implications for the deep geothermal exploitation in China, especially for Gonghe EGS (in Qinghai province) and Xiong’an New Area (in Hebei province) geothermal reservoirs that are close to the Quaternary active faults. Ongoing injection operations in the regions should be conducted with these understandings in mind.

2020 ◽  
Author(s):  
Kyung Won Chang ◽  
Gungor Beskardes ◽  
Chester Weiss

<p>Hydraulic stimulation is the process of initiating fractures in a target reservoir for subsurface energy resource management with applications in unconventional oil/gas and enhanced geothermal systems. The fracture characteristics (i.e., number, size and orientation with respect to the wellbore) determines the modified permeability field of the host rock and thus, numerical simulations of flow in fractured media are essential for estimating the anticipated change in reservoir productivity. However, numerical modeling of fluid flow in highly fractured media is challenging due to the explosive computational cost imposed by the explicit discretization of fractures at multiple length scales. A common strategy for mitigating this extreme cost is to crudely simplify the geometry of fracture network, thereby neglecting the important contributions made by all elements of the complex fracture system.</p><p>The proposed “Hierarchical Finite Element Method” (Hi-FEM; Weiss, Geophysics, 2017) reduces the comparatively insignificant dimensions of planar- and curvilinear-like features by translating them into integrated hydraulic conductivities, thus enabling cost-effective simulations with requisite solutions at material discontinuities without defining ad-hoc, heuristic, or empirically-estimated boundary conditions between fractures and the surrounding formation. By representing geometrical and geostatistical features of a given fracture network through the Hi-FEM computational framework, geometrically- and geomechanically-dependent fluid flow properly can now be modeled economically both within fractures as well as the surrounding medium, with a natural “physics-informed” coupling between the two.</p><p>SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.</p>


2020 ◽  
Vol 205 ◽  
pp. 03007
Author(s):  
Yejin Kim ◽  
Seong Jun Ha ◽  
Tae sup Yun

Hydraulic stimulation has been a key technique in enhanced geothermal systems (EGS) and the recovery of unconventional hydrocarbon resources to artificially generate fractures in a rock formation. Previous experimental studies present that the pattern and aperture of generated fractures vary as the fracking pressure propagation. The recent development of three-dimensional X-ray computed tomography allows visualizing the fractures for further analysing the morphological features of fractures. However, the generated fracture consists of a few pixels (e.g., 1-3 pixels) so that the accurate and quantitative extract of micro-fracture is highly challenging. Also, the high-frequency noise around the fracture and the weak contrast across the fracture makes the application of conventional segmentation methods limited. In this study, we adopted an encoder-decoder network with a convolutional neural network (CNN) based on deep learning method for the fast and precise detection of micro-fractures. The conventional image processing methods fail to extract the continuous fractures and overestimate the fracture thickness and aperture values while the CNN-based approach successfully detects the barely seen fractures. The reconstruction of the 3D fracture surface and quantitative roughness analysis of fracture surfaces extracted by different methods enables comparison of sensitivity (or robustness) to noise between each method.


2021 ◽  
Author(s):  
Saumik Dana

The effect of fluid pulse driven fractures (FPDF) propagating in poroelastic media on fault slip in the presence of natural fractures is a complicated interplay between fracture propagation, fracture-fracture interaction, fracture-fault interaction, friction model governing fault slip and wave propagation associated with pulsing injection. Furthermore, the problem is stochastic due to the uncertainty associated with the existing fracture-fault topology.


2021 ◽  
Author(s):  
Saumik Dana

Understanding the causality between the events leading upto and post fault slip and the earthquake recording is important for seismic design and monitoring of underground structures, bridges and reinforced concrete buildings as well as climate mitigation projects like carbon sequestration and energy technologies like enhanced geothermal systems or oilfield wastewater disposal. While the events leading upto fault slip are typically governed by poroelastostatics, the events post fault slip can easily transition into poroelastodynamics territory due to runaway fault slip velocities. There are marked differences in the numerics of poroelastostatics and poroelastodynamics, and a simple switch from one algorithm to another based on fault slip velocities is not trivial. In fact, an understanding of expected fault slip velocities is critical apriori, as an algorithm which can seamlessly transition from time marching in poroelastostatics realm to poroelastodynamics realm and vice-versa is extremely difficult to achieve. We present the numerics of both physics and point out the differences between the two in this work.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. B121-B130 ◽  
Author(s):  
Jared R. Peacock ◽  
Stephan Thiel ◽  
Graham S. Heinson ◽  
Peter Reid

Realization of enhanced geothermal systems (EGSs) prescribes the need for novel methods to monitor subsurface fracture connectivity and fluid distribution. Magnetotellurics (MT) is a passive electromagnetic (EM) method sensitive to electrical conductivity contrasts as a function of depth, specifically hot saline fluids in a resistive porous media. In July 2011, an EGS fluid injection at 3.6-km depth near Paralana, South Australia, was monitored by comparing repeated MT surveys before and after hydraulic stimulation. An observable coherent change above measurement error in the MT response was present and causal, in that variations in phase predict variations in apparent resistivity. Phase tensor residuals proved the most useful representation for characterizing alterations in subsurface resistivity structure, whereas resistivity tensor residuals aided in determining the sign and amplitude of resistivity variations. These two tensor representations of the residual MT response suggested fluids migrated toward the northeast of the injection well along an existing fault system trending north-northeast. Forward modeling and concurrent microseismic data support these results, although microseismic data suggest fractures opened along two existing fracture networks trending north-northeast and northeast. This exemplifies the need to use EM methods for monitoring fluid injections due to their sensitivity to conductivity contrasts.


2019 ◽  
Vol 11 (24) ◽  
pp. 6904 ◽  
Author(s):  
Sandro Andrés ◽  
David Santillán ◽  
Juan Carlos Mosquera ◽  
Luis Cueto-Felgueroso

Geothermal energy has emerged as an alternative to ensure a green energy supply while tackling climate change. Geothermal systems extract the heat stored in the Earth’s crust by warming up water, but the low rock permeability at exploitation depths may require the hydraulic stimulation of the rock fracture network. Enhanced Geothermal Systems (EGS) employ techniques such as hydro-shearing and hydro-fracturing for that purpose, but their use promotes anthropogenic earthquakes induced by the injection or extraction of fluids. This work addresses this problem through developing a computational 3D model to explore fault reactivation and evaluating the potential for earthquake triggering at preexisting geological faults. These are included in the model as frictional contacts that allow the relative displacement between both of its sides, governed by rate-and-state friction laws and fully coupled with thermo-hydro-mechanical equations. We apply our methodology to the Basel project, employing the on-site parameters and conditions. Our results demonstrate that earthquakes which occurred in December 2006 in Basel (Switzerland) are compatible with the geomechanical and frictional consequences of the hydraulic stimulation of the rock mass. The application of our model also shows that it can be useful for predicting fault reactivation and engineering injection protocols for managing the safe and sustainable operation of EGS.


Sign in / Sign up

Export Citation Format

Share Document