eva foam
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 11)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
R. Wijesiriwardana ◽  
M. Vignarajah ◽  
P. Kathirgamanathan ◽  
G. A. P. Janith

Author(s):  
Shibao Wen ◽  
Zhiyuan Xin ◽  
Ajit Dattatray Phule ◽  
Zhen Xiu Zhang
Keyword(s):  

2021 ◽  
pp. 128352
Author(s):  
Cristiano Zenaide Paiva Junior ◽  
Rogério Santana Peruchi ◽  
Fabiana de Carvalho Fim ◽  
Williane de Oliveira Silva Soares ◽  
Lucineide Balbino da Silva

2021 ◽  
Vol 1028 ◽  
pp. 255-262
Author(s):  
Opa Fajar Muslim ◽  
A.L. Juwono ◽  
Dwi Novriadi ◽  
Tulus

Previous studies on the physical properties of each Polyethylene (PE) or Ethylene Vinyl Acetate (EVA) foam have been widely reported. The current challenge is how to understand the combination of PE and EVA foam in order to obtain appropriate properties in various applications. Therefore, an experimental breakthrough in order to understand the physical mechanism on the PE:EVA mixed foam in order to maintain many appropriate properties due to their applications was studied. The physical properties of a combination of PE and EVA foam with Azodicarbonamide (ADC) as blowing agent and the addition of Zinc Oxide (ZnO) as accelerated agent in foaming process have been investigated in this study. The foams were prepared via two steps. Firstly, the various content of PE and EVA resins with combination of various content of ZnO and the addition of ADC, stearic acids and antioxidants were mixed by a single screw extrusion as the results of pellets. Furthermore, this intermediate product was pressed by compression moulding at the temperature of 175 °C and pressure of 30 bar for 5 minutes, then the pressure was released for the foaming process. The effect of the addition of ZnO were observed on the density and the mechanical properties of the foams. The density decreased with increasing of ZnO content up to 4 per hundred resin (phr) on the foam with PE content maximum of 20 phr. Interestingly the density of the foam increased with the addition of 6 phr of ZnO. Due to the increasing number of ZnO, we found the formation of foams completely. We observed the approval of the hardness, tensile and compression properties of each formulation, respectively. Furthermore, the morphology observation of the foams was conducted by scanning electron microscopy (SEM) to measure the size and homogeneous of the cells. We observed large size of cells at low density of foams, meanwhile uniform of cell was obtained at the high density of foams. Finally, the Fourier transform infrared (FTIR) spectroscopy confirmed that in general the intensity of the absorption peak at around 2216 cm-1 - 2223 cm-1 of each formulation decreased with the addition of ZnO up to 4 phr of ZnO and increased again at 6 phr of ZnO.


2021 ◽  
pp. 009524432199040
Author(s):  
Vanessa Biondo Rosa ◽  
Ademir José Zattera ◽  
Matheus Poletto

In the present work, a proposal for the recycling of ethylene vinyl acetate (EVA) foam waste from the footwear industry using twin-screw extruder was evaluated. Parameters such as antioxidant addition, number of reprocessing, temperature, rotation speed were evaluated. The recycled material was evaluated by means of gel content, scanning electron microscopy (SEM), thermogravimetry (TG) and parallel plate rheometry. From this, the 4 samples were chosen, from the 16 extruded, with a higher probability of forming homogeneous foams to be used in the manufacture of new EVA foams. The foams were evaluated using scanning electron microscopy (SEM), dynamic mechanical analysis (DMA) and physical tests of density, abrasion and permanent compression deformation (PCD). The results showed a decrease in the content of crosslinked gel by up to 13 percentage points for the recycled material with antioxidant. However, there was a possible residual crosslinking, as the crosslinking of all recycled foams was greater than reference (foam). The greatest recycled material homogeneity, observed in the SEM, occurred in the samples processed for five repetitions without antioxidant. Some foams manufactured with recycled waste presented very similar morphological aspects to the reference foam. Foam manufactures with G1 recycled waste (extruded once, at 180°C, 450 rpm, without antioxidant), presented the most uniform and spherical cells. This foam also presented the best responses for the physical tests of PCD and abrasion, even compared to foam without recycle. As well as the lower viscosities for these same samples compared to the previous processing. It was understood that the viscosity of the recycled waste directly interferes with the formation of new EVA foam. Rheometry made it possible to identify the recycling process that resulted in an ideal viscosity material for incorporation in the manufacture of new EVA foams.


2020 ◽  
Vol 4 (3) ◽  
pp. 140
Author(s):  
Kusnindar Priohutomo ◽  
Wibowo Harso Nugroho ◽  
Rosi Dwi Yulfani

Indonesia as a country that often experiences tsunami disasters needs to have an early warning system against tsunami disasters. This system can use various existing technologies, one of which is the tsunami buoy system. The new tsunami buoy system does not use the natural mooring system but uses the wave glider system. This paper discusses the structural strength of the surface floater of wave glider using Eva Foam and Fiberglass material for skin and Alluminium material for frame and kell. The surface floater using 16 pieces for frame and 1 piece for keel. Enviromental loads is use in this paper like hydrodynamics load and weight load. The results from this paper is material from Eva Foam has a maximum principle stress is 12693 Pa and shear stress is 6114.6 Pa. For material from Fiberglass has maximum principle stress is 11.875 Pa and shear stress is 6076.3 Pa. Safety factor (SF) from maximum principle stress and shear stress for Eva Foams is up to 6x and SF for maximum principle and shear stress for Fiberglass is up to 26x. Conclusions for this paper is the desain for surface floater of wave glider it can be operated in the sea with draugh 0.18 m.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kyung Hwa Hong ◽  
Heeran Lee

AbstractThe purpose of this study was to develop a highly comfortable 3D male hip protector using 3D modeling and printing technologies. The hip protector pads and patterns were devised using 3D human body shapes, and three types of pads were chosen in consideration of snowboarding motions. The three types of pads were as follows: first, the original type with no hole; second, an inner open type with an incision on the inside; and third, an outer open type, with an incision on the outside. Another variable of the protective pads was the material: 3D printed thermoplastic polyurethane (TPU) pad + ethylene–vinyl acetate (EVA) foam or only EVA foam. Six types of pad prototypes were 3D printed and evaluated for subjective wearing comfort. Subjective comfort, fit, activity comfort, and shock absorption were evaluated on an 11-point Likert scale. The study results showed that protectors printed using TPU material were not different from the results of 3D modeling. The evaluation results revealed that comfort, fit, and motion comfort were all negatively evaluated by subjects when wearing the original pad. While fit, comfort, and motion comfort were all positively evaluated by subjects when wearing the outer open-type pad, and comfort and motion comfort were positively evaluated by subjects when wearing the inner open-type pad. With respect to materials, pads made with the 3D printing (TPU) and EVA foam combination provided the best results in terms of overall comfort, buttocks comfort, and activity comfort.


2020 ◽  
Vol 10 (3) ◽  
pp. 179-190
Author(s):  
Paulus Wisnu Anggoro ◽  
Abet Adhy Anthony ◽  
Mohammad Tauviqirrahman ◽  
Jamari ◽  
Athanasius Priharyoto Bayuseno ◽  
...  

In this study, ethylene-vinyl acetate (EVA) foam orthotic shoe insoles with different surface roughnesses (Ra) are investigated in terms of CNC milling strategy. Based on a hybrid Taguchi-response surface methodology (TM-RSM) approach, machining parameters, including tool path strategy, spindle speed, feed rate, and step over, as well as material hardness, are of particular interest. The main aim of this work is to develop mathematical models and determine the optimum machining parameters. Experiments are conducted on a CNC milling machine with a standard milling cutter and run under dry coolants. The optimal conditions are established based on TM and then used to determine the optimum values in the RSM modeling. The main finding of the present work is that there are significant improvements in the Ra, by up 0.24% and 4.13%, and machining time, by up 0.43% and 0.41%, obtained with TM-RSM in comparison to TM analysis.


Sign in / Sign up

Export Citation Format

Share Document