Effect of self-assembling WC film upon diamond on adhesion strength with Fe-Co-Ni binder: In situ TEM tensile tests

2022 ◽  
Vol 208 ◽  
pp. 114331
Author(s):  
P.A. Loginov ◽  
A.A. Zaitsev ◽  
D.A. Sidorenko ◽  
E.A. Levashov
2020 ◽  
Author(s):  
Hong-Kyu Kim ◽  
Sung-Hoon Kim ◽  
Jae-Pyoung Ahn

Abstract Deformation twinning (DT), one of the major deformation modes in a crystalline material, has typically been analyzed using generalized planar fault energy (GPFE) curves. Despite the significance of these curves in understanding the twin nucleation and its effect on the mechanical properties of crystals, their validity has never been evaluated experimentally. In this comparative study based on the first-principles calculation, molecular dynamics (MD) simulation, and quantitative in-situ tensile testing of Al nanowires (NWs) inside a transmission electron microscopy (TEM) system, we present both a theoretical and an experimental approach that enable the measurement of a part of the twin formation energy of the perfect Al crystal. The proposed experimental method is also regarded as an indirect but quantitative means for validating the GPFE theory.


2012 ◽  
Vol 18 (S2) ◽  
pp. 738-739
Author(s):  
Q. Yu ◽  
A. Minor ◽  
L. Qi ◽  
J. Li ◽  
R. Mishra
Keyword(s):  

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. A. Loginov ◽  
D. A. Sidorenko ◽  
A. S. Orekhov ◽  
E. A. Levashov

AbstractThe procedure for in situ TEM measurements of bonding strength (adhesion) between diamond and the metal matrix using a Hysitron PI 95 TEM Picoindenter holder for mechanical tests and Push-to-Pull devices was proposed. For tensile tests, dog-bone shaped lamellae 280–330 nm thick and ~ 2.5 µm long were used as objects of study. The lamellae were manufactured using the focused ion beam technology from the metal–diamond interface of diamond-containing composite material with a single-phase binder made of Fe–Co–Ni alloy. The experimentally determined bonding strength was 110 MPa.


2020 ◽  
Author(s):  
Hong-Kyu Kim ◽  
Sung-Hoon Kim ◽  
Jae-Pyoung Ahn

Abstract Deformation twinning, one of the major deformation modes in a crystalline material, has typically been analyzed using generalized planar fault energy (GPFE) curves. Despite the significance of these curves in understanding the twin nucleation and its effect on the mechanical properties of crystals, their experimental validity is lacking. In this comparative study based on the first-principles calculation, molecular dynamics simulation, and quantitative in-situ tensile testing of Al nanowires inside a transmission electron microscopy system, we present both a theoretical and an experimental approach that enable the measurement of a part of the twin formation energy of the perfect Al crystal. The proposed experimental method is also regarded as an indirect but quantitative means for validating the GPFE theory.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Hong-Kyu Kim ◽  
Sung-Hoon Kim ◽  
Jae-Pyoung Ahn

Abstract Deformation twinning, one of the major deformation modes in a crystalline material, has typically been analyzed using generalized planar fault energy (GPFE) curves. Despite the significance of these curves in understanding the twin nucleation and its effect on the mechanical properties of crystals, their experimental validity is lacking. In this comparative study based on the first-principles calculation, molecular dynamics simulation, and quantitative in-situ tensile testing of Al nanowires inside a transmission electron microscopy system, we present both a theoretical and an experimental approach that enable the measurement of a part of the twin formation energy of the perfect Al crystal. The proposed experimental method is also regarded as an indirect but quantitative means for validating the GPFE theory.


Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
R. C. Cieslinski ◽  
M. T. Dineen ◽  
J. L. Hahnfeld

Advanced Styrenic resins are being developed throughout the industry to bridge the properties gap between traditional HIPS (High Impact Polystyrene) and ABS (Acrylonitrile-Butadiene-Styrene copolymers) resins. These new resins have an unprecedented balance of high gloss and high impact energies. Dow Chemical's contribution to this area is based on a unique combination of rubber morphologies including labyrinth, onion skin, and core-shell rubber particles. This new resin, referred as a controlled morphology resin (CMR), was investigated to determine the toughening mechanism of this unique rubber morphology. This poster will summarize the initial studies of these resins using the double-notch four-point bend test of Su and Yee, tensile stage electron microscopy, and Poisson Ratio analysis of the fracture mechanism.


Sign in / Sign up

Export Citation Format

Share Document