scholarly journals JUNO sensitivity to low energy atmospheric neutrino spectra

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Angel Abusleme ◽  
Thomas Adam ◽  
Shakeel Ahmad ◽  
Rizwan Ahmed ◽  
Sebastiano Aiello ◽  
...  

AbstractAtmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3” PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region.

Author(s):  
Md. Shahinur Rahman ◽  
Wayne D. Hutchison ◽  
Lindsey Bignell ◽  
Gregory Lane ◽  
Lei Wang ◽  
...  

Abstract The SABRE (Sodium-iodide with Active Background Rejection) experiment consists of 50 kg of ultrapure NaI(Tl) crystal contained within a 10.5 ton liquid scintillator (LS) veto detector, and will search for dark matter interactions in the inner NaI(Tl) detector. The relative scintillation light yield in NaI(Tl) scintillator for different incident particle energies is not constant and is important for characterizing the detector response. The relative scintillation light yield in two different NaI(Tl) scintillators was measured with a 10 µCi 137Cs radioactive source using the Compton coincidence technique (CCT) for scattering angles 30? - 135? using electron energies ranging from 60 to 500 keVee, and these measurements are compared to the previously published results. Light yield was proportional within 3.5% at energies between 60 and 500 keVee, but non-proportionality increases drastically below 60 keVee which might be due to the non-uniform ionization density and multiple Compton scattering background events in the scintillator. An improved experimental setup with ultrapure NaI(Tl) scintillator and proper coincidence timing of radioactive events could allow scintillation light yield measurement at lower electron recoil energy. The obtained light yield non-proportionality results will be useful for the SABRE dark matter detector experiment.


2011 ◽  
Vol 26 (39) ◽  
pp. 2899-2915 ◽  
Author(s):  
D. JASON KOSKINEN

The IceCube neutrino observatory at the South Pole uses 1 km3 of instrumented ice to detect both astrophysical and atmospheric neutrinos. Expanding the capabilities of the original design, the DeepCore sub-array is a low-energy extension to IceCube which will collect [Formula: see text] atmospheric neutrinos a year. The high statistics sample will allow DeepCore to make neutrino oscillation measurements at higher energies and longer baselines than current experiments. The first successful observation of neutrino induced cascades in a neutrino telescope has recently been observed in DeepCore, which upon further cultivation should help refine atmospheric neutrino flux models. Besides the fundamental neutrino physics, the low-energy reach of DeepCore, down to as low as 10 GeV, and multi-megaton effective volume will enhance indirect searches for WIMP-like dark matter. A new proposal seeking to lower the energy reach down to [Formula: see text] GeV known as the Phased IceCube Next Generation Upgrade (or PINGU) will also be described.


2019 ◽  
Vol 209 ◽  
pp. 01011
Author(s):  
Giulio Settanta ◽  
Stefano Maria Mari ◽  
Cristina Martellini ◽  
Paolo Montini

Cosmic Ray and neutrino oscillation physics can be studied by using atmospheric neutrinos. JUNO (Jiangmen Underground Neutrino Observatory) is a large liquid scintillator detector with low energy detection threshold and excellent energy resolution. The detector performances allow the atmospheric neutrino oscillation measurements. In this work, a discrimination algorithm for different reaction channels of neutrino-nucleon interactions in the JUNO liquid scintillator, in the GeV/sub-GeV energy region, is presented. The atmospheric neutrino flux is taken as reference, considering $\mathop {{v_\mu }}\limits^{( - )} $ and $\mathop {{v_e}}\limits^{( - )} $. The different temporal behaviour of the classes of events have been exploited to build a timeprofile-based discrimination algorithm. The results show a good selection power for $\mathop {{v_e}}\limits^{( - )} $ CC events, while the $\mathop {{v_\mu }}\limits^{( - )} $ CC component suffers of an important contamination from NC events at low energy, which is under study. Preliminary results are presented.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
J. Caravaca ◽  
B. J. Land ◽  
M. Yeh ◽  
G. D. Orebi Gann

AbstractThis paper presents measurements of the scintillation light yield and time profile for a number of concentrations of water-based liquid scintillator, formulated from linear alkylbenzene (LAB) and 2,5-diphenyloxazole (PPO). We find that the scintillation light yield is linear with the concentration of liquid scintillator in water between 1 and 10% with a slope of $$127.9\pm 17.0$$ 127.9 ± 17.0 ph/MeV/concentration and an intercept value of $$108.3\pm 51.0$$ 108.3 ± 51.0 ph/MeV, the latter being illustrative of non-linearities with concentration at values less than 1%. This is larger than expected from a simple extrapolation of the pure liquid scintillator light yield. The measured time profiles are consistently faster than that of pure liquid scintillator, with rise times less than 250 ps and prompt decay constants in the range of 2.1–2.85 ns. Additionally, the separation between Cherenkov and scintillation light is quantified using cosmic muons in the CHESS experiment for each formulation, demonstrating an improvement in separation at the centimeter scale. Finally, we briefly discuss the prospects for large-scale detectors.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
D. Beznosko ◽  
A. Batyrkhanov ◽  
A. Duspayev ◽  
A. Iakovlev ◽  
M. Yessenov

The water-based liquid scintillator (WbLS) is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS). The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV) for water, two different WbLS formulations (0.4% and 0.99%), and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.


2014 ◽  
Vol 29 (16) ◽  
pp. 1442002 ◽  
Author(s):  
Jay Benziger

Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K , U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn , Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.


2002 ◽  
Vol 17 (24) ◽  
pp. 3364-3377 ◽  
Author(s):  
◽  
C. K. JUNG

K2K is a long baseline neutrino oscillation experiment using a neutrino beam produced at the KEK 12 GeV PS, a near detector complex at KEK and a far detector (Super-Kamiokande) in Kamioka, Japan. The experiment was constructed and is being operated by an international consortium of institutions from Japan, Korea, and the US. The experiment started taking data in 1999 and has successfully taken data for about two years. K2K is the first long beseline neutrino oscillation experiment with a baseline of order hundreds of km and is the first accelerator based neutrino oscillation experiment that is sensitive to the Super-Kamiokande allowed region obtained from the atmospheric neutrino oscillation analysis. A total of 44 events have been observed in the far detector during the period of June 1999 to April 2001 corresponding to 3.85 × 1019 protons on target. The observation is consistent with the neutrino oscillation expectations based on the oscillation parameters derived from the atmospheric neutrinos, and the probability that this is a statistical fluctuation of non-oscillation expectation of [Formula: see text] is less than 3%.


2009 ◽  
Vol 79 (11) ◽  
Author(s):  
Orlando L. G. Peres ◽  
A. Yu. Smirnov

Sign in / Sign up

Export Citation Format

Share Document