cumulative cultural evolution
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 48)

H-INDEX

19
(FIVE YEARS 5)

2021 ◽  
pp. 095679762110322
Author(s):  
Marcel Montrey ◽  
Thomas R. Shultz

Surprisingly little is known about how social groups influence social learning. Although several studies have shown that people prefer to copy in-group members, these studies have failed to resolve whether group membership genuinely affects who is copied or whether group membership merely correlates with other known factors, such as similarity and familiarity. Using the minimal-group paradigm, we disentangled these effects in an online social-learning game. In a sample of 540 adults, we found a robust in-group-copying bias that (a) was bolstered by a preference for observing in-group members; (b) overrode perceived reliability, warmth, and competence; (c) grew stronger when social information was scarce; and (d) even caused cultural divergence between intermixed groups. These results suggest that people genuinely employ a copy-the-in-group social-learning strategy, which could help explain how inefficient behaviors spread through social learning and how humans maintain the cultural diversity needed for cumulative cultural evolution.


Author(s):  
Cathal O'Madagain ◽  
Michael Tomasello

The biological approach to culture focuses almost exclusively on processes of social learning, to the neglect of processes of cultural coordination including joint action and shared intentionality. In this paper, we argue that the distinctive features of human culture derive from humans' unique skills and motivations for coordinating with one another around different types of action and information. As different levels of these skills of ‘shared intentionality’ emerged over the last several hundred thousand years, human culture became characterized first by such things as collaborative activities and pedagogy based on cooperative communication, and then by such things as collaborative innovations and normatively structured pedagogy. As a kind of capstone of this trajectory, humans began to coordinate not just on joint actions and shared beliefs, but on the reasons for what we believe or how we act. Coordinating on reasons powered the kinds of extremely rapid innovation and stable cumulative cultural evolution especially characteristic of the human species in the last several tens of thousands of years. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
Nicolas Bredeche ◽  
Nicolas Fontbonne

In this paper, we present an implementation of social learning for swarm robotics. We consider social learning as a distributed online reinforcement learning method applied to a collective of robots where sensing, acting and coordination are performed on a local basis. While some issues are specific to artificial systems, such as the general objective of learning efficient (and ideally, optimal) behavioural strategies to fulfill a task defined by a supervisor, some other issues are shared with social learning in natural systems. We discuss some of these issues, paving the way towards cumulative cultural evolution in robot swarms, which could enable complex social organization necessary to achieve challenging robotic tasks. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
Heather Williams ◽  
Robert F. Lachlan

In studies of cumulative cultural evolution in non-human animals, the focus is most often on incremental changes that increase the efficacy of an existing form of socially learned behaviour, such as the refinement of migratory pathways. In this paper, we compare the songs of different species to describe patterns of evolution in the acoustic structure of bird songs, and explore the question of what building blocks might underlie cumulative cultural evolution of bird song using a comparative approach. We suggest that three steps occurred: first, imitation of independent sounds, or notes, via social learning; second, the formation of categories of note types; and third, assembling note types into sequences with defined structures. Simple sequences can then be repeated to form simple songs or concatenated with other sequences to form segmented songs, increasing complexity. Variant forms of both the notes and the sequencing rules may then arise due to copy errors and innovation. Some variants may become established in the population because of learning biases or selection, increasing signal efficiency, or because of cultural drift. Cumulative cultural evolution of bird songs thus arises from cognitive processes such as vocal imitation, categorization during memorization and learning biases applied to basic acoustic building blocks. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
T. Gruber ◽  
M. Chimento ◽  
L. M. Aplin ◽  
D. Biro

Recent studies in several taxa have demonstrated that animal culture can evolve to become more efficient in various contexts ranging from tool use to route learning and migration. Under recent definitions, such increases in efficiency might satisfy the core criteria of cumulative cultural evolution (CCE). However, there is not yet a satisfying consensus on the precise definition of efficiency, CCE or the link between efficiency and more complex, extended forms of CCE considered uniquely human. To bring clarity to this wider discussion of CCE, we develop the concept of efficiency by (i) reviewing recent potential evidence for CCE in animals, and (ii) clarifying a useful definition of efficiency by synthesizing perspectives found within the literature, including animal studies and the wider iterated learning literature. Finally, (iii) we discuss what factors might impinge on the informational bottleneck of social transmission, and argue that this provides pressure for learnable behaviours across species. We conclude that framing CCE in terms of efficiency casts complexity in a new light, as learnable behaviours are a requirement for the evolution of complexity. Understanding how efficiency greases the ratchet of cumulative culture provides a better appreciation of how similar cultural evolution can be between taxonomically diverse species—a case for continuity across the animal kingdom. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
S. Wild ◽  
M. Chimento ◽  
K. McMahon ◽  
D. R. Farine ◽  
B. C. Sheldon ◽  
...  

Recent well-documented cases of cultural evolution towards increasing efficiency in non-human animals have led some authors to propose that other animals are also capable of cumulative cultural evolution, where traits become more refined and/or complex over time. Yet few comparative examples exist of traits increasing in complexity, and experimental tests remain scarce. In a previous study, we introduced a foraging innovation into replicate subpopulations of great tits, the ‘sliding-door puzzle’. Here, we track diffusion of a second ‘dial puzzle’, before introducing a two-step puzzle that combines both actions. We mapped social networks across two generations to ask if individuals could: (1) recombine socially-learned traits and (2) socially transmit a two-step trait. Our results show birds could recombine skills into more complex foraging behaviours, and naïve birds across both generations could learn the two-step trait. However, closer interrogation revealed that acquisition was not achieved entirely through social learning—rather, birds socially learned components before reconstructing full solutions asocially. As a consequence, singular cultural traditions failed to emerge, although subpopulations of birds shared preferences for a subset of behavioural variants. Our results show that while tits can socially learn complex foraging behaviours, these may need to be scaffolded by rewarding each component. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
Ellen C. Garland ◽  
Claire Garrigue ◽  
Michael J. Noad

Culture presents a second inheritance system by which innovations can be transmitted between generations and among individuals. Some vocal behaviours present compelling examples of cultural evolution. Where modifications accumulate over time, such a process can become cumulative cultural evolution. The existence of cumulative cultural evolution in non-human animals is controversial. When physical products of such a process do not exist, modifications may not be clearly visible over time. Here, we investigate whether the constantly evolving songs of humpback whales ( Megaptera novaeangliae ) are indicative of cumulative cultural evolution. Using nine years of song data recorded from the New Caledonian humpback whale population, we quantified song evolution and complexity, and formally evaluated this process in light of criteria for cumulative cultural evolution. Song accumulates changes shown by an increase in complexity, but this process is punctuated by rapid loss of song material. While such changes tentatively satisfy the core criteria for cumulative cultural evolution, this claim hinges on the assumption that novel songs are preferred by females. While parsimonious, until such time as studies can link fitness benefits (reproductive success) to individual singers, any claims that humpback whale song evolution represents a form of cumulative cultural evolution may remain open to interpretation. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
Maxime Derex

Cumulative cultural evolution (CCE)—defined as the process by which beneficial modifications are culturally transmitted and progressively accumulated over time—has long been argued to underlie the unparalleled diversity and complexity of human culture. In this paper, I argue that not just any kind of cultural accumulation will give rise to human-like culture. Rather, I suggest that human CCE depends on the gradual exploitation of natural phenomena, which are features of our environment that, through the laws of physics, chemistry or biology, generate reliable effects which can be exploited for a purpose. I argue that CCE comprises two distinct processes: optimizing cultural traits that exploit a given set of natural phenomena (Type I CCE) and expanding the set of natural phenomena we exploit (Type II CCE). I argue that the most critical features of human CCE, including its open-ended dynamic, stems from Type II CCE. Throughout the paper, I contrast the two processes and discuss their respective socio-cognitive requirements. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
Aliki Papa ◽  
Mioara Cristea ◽  
Nicola McGuigan ◽  
Monica Tamariz

AbstractHuman culture is the result of a unique cumulative evolutionary process. Despite the importance of culture for our species the social transmission mechanisms underlying this process are still not fully understood. In particular, the role of language—another unique human behaviour—in social transmission is under-explored. In this first direct, systematic comparison of demonstration vs. language-based social learning, we ran transmission chains of participants (6- to 8-year-old children and adults from Cyprus) who attempted to extract a reward from a puzzle box after either watching a model demonstrate an action sequence or after listening to verbal instructions describing the action sequence. The initial seeded sequences included causally relevant and irrelevant actions allowing us to measure transmission fidelity and the accumulation of beneficial modifications through the lens of a subtractive ratchet effect. Overall, we found that, compared to demonstration, verbal instruction specifically enhanced the faithful transmission of causally irrelevant actions (overimitation) in children, but not in adults. Cumulative cultural evolution requires the faithful transmission of sophisticated, complex behaviour whose function may not be obvious. This indicates that, by supporting the retention of actions that appear to lack a causal function specifically by children, language may play a supportive role in cumulative cultural evolution.


2021 ◽  
Author(s):  
Salva Duran-Nebreda ◽  
Sergi Valverde

The evolution of computing is an example of a major, transformative technological adaptation still unfolding in human history. Information technologies are supported by many other knowledge domains that have evolved through a cumulative cultural process, yet at the same time computing affects the tempo and mode of cultural evolution, greatly accelerating innovation processes driven by recombination of present technologies. Additionally, computing has created entire new domains for cumulative cultural evolution, furthering an era dominated by digital economies and media. These new domains offer very desirable qualities for cultural evolution research and digital archaeology, including good coverage in data completeness in widely different aspects of human culture, from social networks to innovation in programming languages. We review the major transitions in information technologies, with especial interest in their connections to a biological evolutionary framework. In particular, software vs. hardware evolution poses an interesting example of symbiotic technologies that display strong social dependencies as well as an extrinsic fitness due to energetic and temporal constrains. Properly accounting for the interplay of material and social factors can explain the coexistence of gradualism and punctuated dynamics in cultural and technological evolution.


Sign in / Sign up

Export Citation Format

Share Document