scholarly journals Modularity of supersymmetric partition functions

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Abhijit Gadde

Abstract We discover a modular property of supersymmetric partition functions of supersymmetric theories with R-symmetry in four dimensions. This modular property is, in a sense, the generalization of the modular invariance of the supersymmetric partition function of two-dimensional supersymmetric theories on a torus i.e. of the elliptic genus. The partition functions in question are on manifolds homeomorphic to the ones obtained by gluing solid tori. Such gluing involves the choice of a large diffeomorphism of the boundary torus, along with the choice of a large gauge transformation for the background flavor symmetry connections, if present. Our modular property is a manifestation of the consistency of the gluing procedure. The modular property is used to rederive a supersymmetric Cardy formula for four dimensional gauge theories that has played a key role in computing the entropy of supersymmetric black holes. To be concrete, we work with four-dimensional $$ \mathcal{N} $$ N = 1 supersymmetric theories but we expect versions of our result to apply more widely to supersymmetric theories in other dimensions.

2009 ◽  
Vol 24 (32) ◽  
pp. 6105-6121 ◽  
Author(s):  
P. TEOTONIO-SOBRINHO ◽  
C. MOLINA ◽  
N. YOKOMIZO

We study a class of lattice field theories in two dimensions that includes gauge theories. We show that in these theories it is possible to implement a broader notion of local symmetry, based on semisimple Hopf algebras. A character expansion is developed for the quasitopological field theories, and partition functions are calculated with this tool. Expected values of generalized Wilson loops are defined and studied with the character expansion.


2020 ◽  
Vol 110 (10) ◽  
pp. 2779-2853
Author(s):  
Ingmar Saberi ◽  
Brian R. Williams

Abstract We consider holomorphic twists of arbitrary supersymmetric theories in four dimensions. Working in the BV formalism, we rederive classical results characterizing the holomorphic twist of chiral and vector supermultiplets, computing the twist explicitly as a family over the space of nilpotent supercharges in minimal supersymmetry. The BV formalism allows one to work with or without auxiliary fields, according to preference; for chiral superfields, we show that the result of the twist is an identical BV theory, the holomorphic $$\beta \gamma $$ β γ system with superpotential, independent of whether or not auxiliary fields are included. We compute the character of local operators in this holomorphic theory, demonstrating agreement of the free local operators with the usual index of free fields. The local operators with superpotential are computed via a spectral sequence and are shown to agree with functions on a formal mapping space into the derived critical locus of the superpotential. We consider the holomorphic theory on various geometries, including Hopf manifolds and products of arbitrary pairs of Riemann surfaces, and offer some general remarks on dimensional reductions of holomorphic theories along the $$(n-1)$$ ( n - 1 ) -sphere to topological quantum mechanics. We also study an infinite-dimensional enhancement of the flavor symmetry in this example, to a recently studied central extension of the derived holomorphic functions with values in the original Lie algebra, that generalizes the familiar Kac–Moody enhancement in two-dimensional chiral theories.


2014 ◽  
Vol 29 (32) ◽  
pp. 1530004 ◽  
Author(s):  
Heng-Yu Chen ◽  
Hsiao-Yi Chen ◽  
Jun-Kai Ho

We explicitly apply localization results to study the interpolation between three- and two-dimensional mirror symmetries for Abelian gauge theories with four supercharges. We first use the ellipsoid [Formula: see text] partition functions to verify the mirror symmetry between a pair of general three-dimensional 𝒩 = 2 Abelian Chern–Simons quiver gauge theories. These expressions readily factorize into holomorphic blocks and their antiholomorphic copies, so we can also obtain the partition functions on S1×S2 via fusion procedure. We then demonstrate S1×S2 partition functions for the three-dimensional Abelian gauge theories can be dimensionally reduced to the S2 partition functions of 𝒩 = (2, 2) GLSM and Landau–Ginzburg model for the corresponding two-dimensional mirror pair, as anticipated previously in M. Aganagic et al., J. High Energy Phys.0107, 022 (2001). We also comment on the analogous interpolation for the non-Abelian gauge theories and compute the K-theory vortex partition function for a simple limit to verify the prediction from holomorphic block.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hee-Cheol Kim ◽  
Minsung Kim ◽  
Sung-Soo Kim

Abstract We compute the partition function for 6d $$ \mathcal{N} $$ N = 1 SO(2N) gauge theories compactified on a circle with ℤ2 outer automorphism twist. We perform the computation based on 5-brane webs with two O5-planes using topological vertex with two O5-planes. As representative examples, we consider 6d SO(8) and SU(3) gauge theories with ℤ2 twist. We confirm that these partition functions obtained from the topological vertex with O5-planes indeed agree with the elliptic genus computations.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sung-Soo Kim ◽  
Yuji Sugimoto ◽  
Futoshi Yagi

Abstract We study 6d E-string theory with defects on a circle. Our basic strategy is to apply the geometric transition to the supersymmetric gauge theories. First, we calculate the partition functions of the 5d SU(3)0 gauge theory with 10 flavors, which is UV-dual to the 5d Sp(2) gauge theory with 10 flavors, based on two different 5-brane web diagrams, and check that two partition functions agree with each other. Then, by utilizing the geometric transition, we find the surface defect partition function for E-string on ℝ4 × T2. We also discuss that our result is consistent with the elliptic genus. Based on the result, we show how the global symmetry is broken by the defects, and discuss that the breaking pattern depends on where/how we insert the defects.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masazumi Honda ◽  
Naotaka Kubo

Abstract It has been conjectured that duality cascade occurs in the $$ \mathcal{N} $$ N = 3 supersymmetric Yang-Mills Chern-Simons theory with the gauge group U(N)k × U(N + M)−k coupled to two bi-fundamental hypermultiplets. The brane picture suggests that this duality cascade can be generalized to a class of 3d $$ \mathcal{N} $$ N = 3 supersymmetric quiver gauge theories coming from so-called Hanany-Witten type brane configurations. In this paper we perform non-perturbative tests of the duality cascades using supersymmetry localization. We focus on S3 partition functions and prove predictions from the duality cascades. We also discuss that our result can be applied to generate new dualities for more general theories which include less supersymmetric theories and theories without brane constructions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Arjun Bagchi ◽  
Sudipta Dutta ◽  
Kedar S. Kolekar ◽  
Punit Sharma

Abstract Two dimensional field theories with Bondi-Metzner-Sachs symmetry have been proposed as duals to asymptotically flat spacetimes in three dimensions. These field theories are naturally defined on null surfaces and hence are conformal cousins of Carrollian theories, where the speed of light goes to zero. In this paper, we initiate an investigation of anomalies in these field theories. Specifically, we focus on the BMS equivalent of Weyl invariance and its breakdown in these field theories and derive an expression for Weyl anomaly. Considering the transformation of partition functions under this symmetry, we derive a Carrollian Liouville action different from ones obtained in the literature earlier.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Francesco Fucito ◽  
Jose Francisco Morales ◽  
Massimiliano Ronzani ◽  
Ekaterina Sysoeva ◽  
...  

AbstractWe compute the $$\mathcal{N}=2$$ N = 2 supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kähler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $$\mathbb {C}^2$$ C 2 . The evaluation of these residues is greatly simplified by using an “abstruse duality” that relates the residues at the poles of the one-loop and instanton parts of the $$\mathbb {C}^2$$ C 2 partition function. As particular cases, our formulae compute the SU(2) and SU(3) equivariant Donaldson invariants of $$\mathbb {P}^2$$ P 2 and $$\mathbb {F}_n$$ F n and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the SU(2) case. Finally, we show that the U(1) self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $$\mathcal {N}=2$$ N = 2 analog of the $$\mathcal {N}=4$$ N = 4 holomorphic anomaly equations.


Sign in / Sign up

Export Citation Format

Share Document