scholarly journals Gut Bacterial Communities of Lymantria xylina and Their Associations with Host Development and Diet

2021 ◽  
Vol 9 (9) ◽  
pp. 1860
Author(s):  
Qiuyu Ma ◽  
Yonghong Cui ◽  
Xu Chu ◽  
Guoqiang Li ◽  
Meijiao Yang ◽  
...  

The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria.

Author(s):  
Molly C. Carney ◽  
Xiang Zhan ◽  
Akanksha Rangnekar ◽  
Maria Z. Chroneos ◽  
Sarah J.C. Craig ◽  
...  

Abstract Rapid infant growth increases the risk for adult obesity. The gut microbiome is associated with early weight status; however, no study has examined how interactions between microbial and host ribonucleic acid (RNA) expression influence infant growth. We hypothesized that dynamics in infant stool micro-ribonucleic acids (miRNAs) would be associated with both microbial activity and infant growth via putative metabolic targets. Stool was collected twice from 30 full-term infants, at 1 month and again between 6 and 12 months. Stool RNA were measured with high-throughput sequencing and aligned to human and microbial databases. Infant growth was measured by weight-for-length z-score at birth and 12 months. Increased RNA transcriptional activity of Clostridia (R = 0.55; Adj p = 3.7E-2) and Burkholderia (R = −0.820, Adj p = 2.62E-3) were associated with infant growth. Of the 25 human RNAs associated with growth, 16 were miRNAs. The miRNAs demonstrated significant target enrichment (Adj p < 0.05) for four metabolic pathways. There were four associations between growth-related miRNAs and growth-related phyla. We have shown that longitudinal trends in gut microbiota activity and human miRNA levels are associated with infant growth and the metabolic targets of miRNAs suggest these molecules may regulate the biosynthetic landscape of the gut and influence microbial activity.


2021 ◽  
Vol 22 (11) ◽  
pp. 5941
Author(s):  
Abigail Ngugi-Dawit ◽  
Isaac Njaci ◽  
Thomas J.V. Higgins ◽  
Brett Williams ◽  
Sita R. Ghimire ◽  
...  

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an economically important legume playing a crucial role in the semi-arid tropics. Pigeonpea is susceptible to Helicoverpa armigera (Hübner), which causes devastating yield losses. This pest is developing resistance to many commercially available insecticides. Therefore, crop wild relatives of pigeonpea, are being considered as potential sources of genes to expand the genetic base of cultivated pigeonpea to improve traits such as host plant resistance to pests and pathogens. Quantitative proteomic analysis was conducted using the tandem mass tag platform to identify differentially abundant proteins between IBS 3471 and ICPL 87 tolerant accession and susceptible variety to H. armigera, respectively. Leaf proteome were analysed at the vegetative and flowering/podding growth stages. H. armigera tolerance in IBS 3471 appeared to be related to enhanced defence responses, such as changes in secondary metabolite precursors, antioxidants, and the phenylpropanoid pathway. The development of larvae fed on an artificial diet with IBS 3471 lyophilised leaves showed similar inhibition with those fed on an artificial diet with quercetin concentrations with 32 mg/25 g of artificial diet. DAB staining (3,3’-diaminobenzidine) revealed a rapid accumulation of reactive oxygen species in IBS 3471. We conclude that IBS 3471 is an ideal candidate for improving the genetic base of cultivated pigeonpea, including traits for host plant resistance.


Author(s):  
Shien Ren ◽  
Chao Fan ◽  
Liangzhi Zhang ◽  
Xianjiang Tang ◽  
Haibo Fu ◽  
...  

Abstract Plants produce various plant secondary compounds (PSCs) to deter the foraging of herbivorous mammals. However, little is known about whether PSCs can reshape gut microbiota and promote gut homeostasis of hosts. Using 16S rDNA sequencing to investigate the effects of PSCs on the gut microbiota of small herbivorous mammals, we studied plateau pikas (Ochotona curzoniae) fed diets containing swainsonine (SW) extracted from Oxytropis ochrocephala. Our results showed that both long- and short-term treatment of a single artificial diet in the laboratory significantly reduced alpha diversity and significantly affected beta diversity, core bacteria abundance, and bacterial functions in pikas. After SW was added to the artificial diet, the alpha diversity significantly increased in the long-term treatment, and core bacteria (e.g., Akkermansiaceae) with altered relative abundances in the two treatments showed no significant difference compared with pikas in the wild. The complexity of the co-occurrence network structure was reduced in the artificial diet, but it increased after SW was added in both treatments. Further, the abundances of bacteria related to altered alanine, aspartate, and glutamate metabolism in the artificial diet were restored in response to SW. SW further decreased the concentration of short-chain fatty acids (SCFAs) in both treatments. Our results suggest that PSCs play a key role in regulating gut microbiota community and intestinal homeostasis, thereby maintaining host health. Key points • Swainsonine improves the intestinal bacterial diversity of plateau pikas. • Swainsonine promotes the recovery of core bacterial abundances in the gut of plateau pikas. • Swainsonine promotes the restoration of intestinal bacterial functions of plateau pikas.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dieter M. Tourlousse ◽  
Koji Narita ◽  
Takamasa Miura ◽  
Mitsuo Sakamoto ◽  
Akiko Ohashi ◽  
...  

Abstract Background Validation and standardization of methodologies for microbial community measurements by high-throughput sequencing are needed to support human microbiome research and its industrialization. This study set out to establish standards-based solutions to improve the accuracy and reproducibility of metagenomics-based microbiome profiling of human fecal samples. Results In the first phase, we performed a head-to-head comparison of a wide range of protocols for DNA extraction and sequencing library construction using defined mock communities, to identify performant protocols and pinpoint sources of inaccuracy in quantification. In the second phase, we validated performant protocols with respect to their variability of measurement results within a single laboratory (that is, intermediate precision) as well as interlaboratory transferability and reproducibility through an industry-based collaborative study. We further ascertained the performance of our recommended protocols in the context of a community-wide interlaboratory study (that is, the MOSAIC Standards Challenge). Finally, we defined performance metrics to provide best practice guidance for improving measurement consistency across methods and laboratories. Conclusions The validated protocols and methodological guidance for DNA extraction and library construction provided in this study expand current best practices for metagenomic analyses of human fecal microbiota. Uptake of our protocols and guidelines will improve the accuracy and comparability of metagenomics-based studies of the human microbiome, thereby facilitating development and commercialization of human microbiome-based products.


2021 ◽  
Vol 17 ◽  
pp. 117693432199635
Author(s):  
Daoxin Liu ◽  
Pengfei Song ◽  
Jingyan Yan ◽  
Haijing Wang ◽  
Zhenyuan Cai ◽  
...  

Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor ( Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference ( P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.


Author(s):  
Matthew T. Panhans ◽  
Reinhard Schumacher

Abstract This paper investigates the views on competition theory and policy of the American institutional economists during the first half of the 20th century. These perspectives contrasted with those of contemporary neoclassical and later mainstream economic approaches. We identify three distinct dimensions to an institutionalist perspective on competition. First, institutionalist approaches focused on describing industry details, so as to bring theory into closer contact with reality. Second, institutionalists emphasized that while competition was sometimes beneficial, it could also be disruptive. Third, institutionalists had a broad view of the objectives of competition policy that extended beyond effects on consumer welfare. Consequently, institutionalists advocated for a wide range of policies to enhance competition, including industrial self-regulation, broad stakeholder representation within corporations, and direct governmental regulations. Their experimental attitude implied that policy would always be evolving, and antitrust enforcement might be only one stage in the development toward a regime of industrial regulation.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 534 ◽  
Author(s):  
Cristian Pasquaretta ◽  
Tamara Gómez-Moracho ◽  
Philipp Heeb ◽  
Mathieu Lihoreau

Microbes influence a wide range of host social behaviors and vice versa. So far, however, the mechanisms underpinning these complex interactions remain poorly understood. In social animals, where individuals share microbes and interact around foods, the gut microbiota may have considerable consequences on host social interactions by acting upon the nutritional behavior of individual animals. Here we illustrate how conceptual advances in nutritional ecology can help the study of these processes and allow the formulation of new empirically testable predictions. First, we review key evidence showing that gut microbes influence the nutrition of individual animals, through modifications of their nutritional state and feeding decisions. Next, we describe how these microbial influences and their social consequences can be studied by modelling populations of hosts and their gut microbiota into a single conceptual framework derived from nutritional geometry. Our approach raises new perspectives for the study of holobiont nutrition and will facilitate theoretical and experimental research on the role of the gut microbiota in the mechanisms and evolution of social behavior.


2018 ◽  
Vol 16 (4) ◽  
pp. 517-532
Author(s):  
Bex Lewis

Social media has become a part of everyday life, including the faith lives of many. It is a space that assumes an observing gaze. Engaging with Foucauldian notions of surveillance, self-regulation, and normalisation, this paper considers what it is about social and digital culture that shapes expectations of what users can or want to do in online spaces. Drawing upon a wide range of surveillance research, it reflects upon what “surveillance” looks like within social media, especially when users understand themselves to be observed in the space. Recognising moral panics around technological development, the paper considers the development of social norms and questions how self-regulation by users presents itself within a global population. Focusing upon the spiritual formation of Christian users (disciples) in an online environment as a case study of a community of practice, the paper draws particularly upon the author’s experiences online since 1997 and material from The Big Bible Project (CODEC 2010–2015). The research demonstrates how the lived experience of the individual establishes the interconnectedness of the online and offline environments. The surveillant affordances and context collapse are liberating for some users but restricting for others in both their faith formation and the subsequent imperative to mission.


2021 ◽  
Vol 118 (6) ◽  
pp. e2016046118 ◽  
Author(s):  
Camille Simonet ◽  
Luke McNally

Through the secretion of “public goods” molecules, microbes cooperatively exploit their habitat. This is known as a major driver of the functioning of microbial communities, including in human disease. Understanding why microbial species cooperate is therefore crucial to achieve successful microbial community management, such as microbiome manipulation. A leading explanation is that of Hamilton’s inclusive-fitness framework. A cooperator can indirectly transmit its genes by helping the reproduction of an individual carrying similar genes. Therefore, all else being equal, as relatedness among individuals increases, so should cooperation. However, the predictive power of relatedness, particularly in microbes, is surrounded by controversy. Using phylogenetic comparative analyses across the full diversity of the human gut microbiota and six forms of cooperation, we find that relatedness is predictive of the cooperative gene content evolution in gut-microbe genomes. Hence, relatedness is predictive of cooperation over broad microbial taxonomic levels that encompass variation in other life-history and ecology details. This supports the generality of Hamilton’s central insights and the relevance of relatedness as a key parameter of interest to advance microbial predictive and engineering science.


Sign in / Sign up

Export Citation Format

Share Document